Abstracts

On chip nonlinear quantum devices

Presenting Author: Linda Sansoni, Paderborn

In the last years the challenge of showing quantum supremacy has greatly attracted the interest of the scientific community. In this context the adoption of integrated photonic platforms has shown a great potential to finally confirm the advantage of using quantum resources compared to classical ones. Integrated photonics is indeed an optimal candidate for the experimental implementation of highly complex and compact quantum circuits. Despite the enormous development in this field, one of the major issues still remains a reliable and efficient generation of quantum states of light. Integrated waveguide sources have suitable features for this purpose as high brightness and stability. Nevertheless requirements as generation of light on different spatial modes or the possibility to operate the devices outside the lab, are still a major challenge. Here we present how we address these challenges by exploiting new waveguide designs in lithium niobate substrates and the adoption of fiber-hybrid technology. Our devices range from multichannel sources of entangled states to a fully plug and play source of heralded single photons. With these achievements we bring the quantum technology to a next level of development and a step closer to the adoption of a fully integrated platform for quantum information applications.

(Session 7 : Friday from 10:15am -11:00am)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!