Abstracts

On nonlinear transformations in quantum computation

Presenting Author: Yigit Subasi, Los Alamos National Laboratory
Contributing Author(s): Zoƫ Holmes, Nolan J. Coble, Andrew T. Sornborger.

While quantum computers are naturally well-suited to implementing linear operations, it is less clear how to implement nonlinear operations on quantum computers. However, nonlinear subroutines may prove key to a range of applications of quantum computing from solving nonlinear equations to data processing and quantum machine learning. Here we develop algorithms for implementing nonlinear transformations of input quantum states. Our algorithms are framed around the concept of a weighted state, a mathematical entity describing the output of an operational procedure involving both quantum circuits and classical post-processing.

Read this article online: https://arxiv.org/abs/2112.12307

(Session 5 : Thursday from 5:00 pm - 7:00 pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Associate Professor
amiyake@unm.edu

SQuInT Co-Organizer
Hartmut Haeffner, Associate Professor, UC Berkeley
hhaeffner@berkeley.edu

SQuInT Administrator
Dwight Zier
d29zier@unm.edu
505 277-1850

SQuInT Program Committee
Alberto Alonso, Postdoc, UC Berkeley
Philip Blocher, Postdoc, UNM
Neha Yadav, Postdoc, UC Berkeley
Cunlu Zhou, Postdoc, UNM

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director
ideutsch@unm.edu

Tweet About SQuInT 2022!