Abstracts

Test of Causal Non-Linear Quantum Mechanics by Ramsey Interferometry on the Vibrational Mode of a Trapped Ion

Presenting Author: Joseph Broz, University of California Berkeley
Contributing Author(s): Bingran You, Sumanta Khan, Hartmut Haeffner, David E. Kaplan, Surjeet Rajendran

Kaplan and Rajendran have recently demonstrated that non-linear and state-dependent terms can be consistently added to quantum field theory to yield causal non-linear time evolution in quantum mechanics. Causal non-linear theories have the unavoidable feature that their quantum effects are dramatically sensitive to the full physical spread of the quantum state of the system. As a result, such theories are not well tested by conventional atomic and nuclear spectroscopy. By using a well-controlled superposition of vibrational modes of a 40Ca+ ion trapped in a harmonic potential, we set a stringent limit of 5.4×10−12 on the magnitude of the unitless scaling factor ϵ̃γ for the predicted causal, non-linear perturbation.

Read this article online: https://doi.org/10.48550/arXiv.2206.12976

(Session 5 : Thursday from 5:00 pm - 7:00 pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Associate Professor
amiyake@unm.edu

SQuInT Co-Organizer
Hartmut Haeffner, Associate Professor, UC Berkeley
hhaeffner@berkeley.edu

SQuInT Administrator
Dwight Zier
d29zier@unm.edu
505 277-1850

SQuInT Program Committee
Alberto Alonso, Postdoc, UC Berkeley
Philip Blocher, Postdoc, UNM
Neha Yadav, Postdoc, UC Berkeley
Cunlu Zhou, Postdoc, UNM

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director
ideutsch@unm.edu

Tweet About SQuInT 2022!