New color centers in diamond for long distance quantum networks

Presenting Author: Nathalie de Leon, Princeton University

Color centers in diamond are promising candidates for quantum networks, as they can serve as solid state quantum memories with efficient optical transitions. Prior work has focused on the NV- center in diamond, which exhibits long spin coherence times and has narrow, spin-conserving optical transitions. However, the NV- center is prone to spectral diffusion, and over 97% of emission is in an incoherent phonon side band, severely limiting scalability. Alternatively, SiV- exhibits excellent optical properties, with 70% of its emission in the zero phonon line and a narrow inhomogeneous linewidth. However, SiV- suffers from significant interaction with phonons, with spin coherence times limited by an orbital relaxation time (T1) of around 40 ns at 5 K. Informed by the limitations of NV- and SiV-, we have developed new methods to control the diamond Fermi level to stabilize the neutral charge state of SiV, thus accessing a new spin configuration. SiV0 exhibits a spin T1 of around 1 minute at 4 K, coherence time (T2) approaching 1 second, over 90% of emission in the zero phonon line, and near-transform limited optical linewidths, making it a promising candidate for applications in quantum networks.

(Session 3 : Thursday from 1:30pm-2:15pm)


SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU

SQuInT Administrator
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor

Tweet About SQuInT 2018!