Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry

Presenting Author: Eli Megidish, University of California Berkeley
Contributing Author(s): Joe Broz, Nicole Greene, Hartmut Haeffner

Probing for local Lorentz violation is important in the search for physics beyond the standard model. Lorentz violations in the electro- magnetic sector can be probed by performing an electron analogue of the Michelson-Morley experiment. We split an electron wave packet inside a Calcium ion into two parts with different orientations and recombine them back to probe for any phase differences. As the earth rotates, the absolute spatial orientation of the two wave packets change, and anisotropies in the electron dispersion will modify the phase of the interference signal. To reduce noise, we prepare a highly entangled state in calcium ions insusceptible to common magnetic field noise. Our experiment demonstrates the potential use of quantum entanglement to enhance the sensitivity of precision measurements.

(Session 8 : Friday from 2:15pm-2:45pm)


SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU

SQuInT Administrator
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor

Tweet About SQuInT 2018!