Abstracts

Three-Dimensional Numerical Simulations of BEC Transport Using Shortcuts to Adiabaticity

Presenting Author: Chris Larson, Miami University
Contributing Author(s): Edwardo Carlo Samson

We report on our numerical simulations of high-fidelity, fast quantum control of Bose-Einstein condensates (BECs) as we extend them to full 3D solutions of the Gross-Pitaevskii equation. We simulate a 3D painted potential that provides complete confinement of the atoms. Painted potentials allow for arbitrary and dynamic traps, which control the spatial transport of the BEC. To achieve high quantum fidelity after transport, we implement shortcuts-to-adiabaticity (STAs) to design the BEC trajectory in our simulations. STAs allow fast movement while suppressing excitations that can result due to the rapid transitions of the quantum state. In our 3D simulations, quantum fidelities resulting from different, experimentally viable transport times and trap depths are compared. Using the measured frequencies of the different traps and by simulating transport over multiples of those periods, we seek to identify and analyze a possible cause of lower than expected post-transport fidelities.

(Session 5 : Thursday from 12:00pm-2:00 pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Associate Professor
amiyake@unm.edu

SQuInT Co-Organizer
Brian Smith, Associate Professor
bjsmith@uoregon.edu

SQuInT Local Organizers
Philip Blocher, Postdoc
Pablo Poggi, Research Assistant Professor
Tzula Propp, Postdoc
Jun Takahashi, Postdoc
Cunlu Zhou, Postdoc

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director
ideutsch@unm.edu

Tweet About SQuInT 2021!