Quantum gravity in the lab: teleportation by size and traversable wormholes

Presenting Author: Sepehr Nezami, California Institute of Technology
Contributing Author(s): Adam Brown Hrant Gharibyan Stefan Leichenauer Henry Lin Grant Salton Leonard Susskind Brian Swingle Michael Walter

Traversable wormholes in holography exhibit a strange phenomenon: with the aid of a simple and weak coupling, any local signal inserted at time −t in one boundary system -followed by the dissipation caused by chaotic dynamics- reappears at time +t on the other boundary system. Inspired by the traversable wormholes, we propose teleportation experiments that can readily be performed in an atomic physics lab exhibiting similar behavior. We study this phenomenon when the entanglement between two systems is maximal (i.e., infinite temperature thermofield double (TFD) state) in various systems. We introduce the core information theoretic paradigm behind this phenomenon, which we call Teleportation by Size, to encapsulate how the physics of operator size growth naturally leads to transmission of a signal in many different scenarios. We argue that the infinite temperature phenomenon, although sharing the surprising properties, does not immediately correspond to a signal going through a wormhole. In fact, in the systems with gravitational dual, this corresponds to transmission of signal with the aid of vastly different geometries. Instead, we introduce a property of the growth distribution of operators called size winding, which only exists at low temperature, and show that it explains the boundary physics of the signals traversing in geometrical wormholes. We argue that an imperfect form of size winding -common in quantum systems- has an imprint on the fidelity of teleportation.

(Session 9c : Sunday from 4:15pm - 4:45pm)


SQuInT Chief Organizer
Akimasa Miyake, Associate Professor

SQuInT Co-Organizer
Brian Smith, Associate Professor UO

SQuInT Program Committee
Postdoctoral Fellows:
Markus Allgaier (UO OMQ)
Sayonee Ray (UNM CQuIC)
Pablo Poggi (UNM CQuIC)
Valerian Thiel (UO OMQ)

SQuInT Event Co-Organizers (Oregon)
Jorjie Arden
Holly Lynn

SQuInT Event Administrator (Oregon)
Brandy Todd

SQuInT Administrator (CQuIC)
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director

Tweet About SQuInT 2020!