Two-photon Fourier transform spectroscopy

Presenting Author: Tiemo Landes, University of Oregon
Contributing Author(s): Amr Tamimi, Jonathan Lavoie, Michael Raymer, Brian Smith, Andrew Marcus

We detail the various quantum pathways and interferences in a Mach-Zehnder interferometer resulting from insertion of time-frequency entangled photon pairs (EPP) into a single port of the interferometer. We then experimentally demonstrate two-photon coincidence Fourier transform spectroscopy and refractometry using frequency degenerate EPP centered around 532 nm generated via Type-I collinear spontaneous parametric down-conversion. The measurement is further improved by introducing phase-modulation in the interferometer via acousto-optic modulators enabling phase-sensitive measurement referenced to a helium-neon laser counter-propagating through the interferometer. The phase-sensitive measurement reduces the sampling requirement in path-delay space to fully reproduce the interference fringes, as well as minimizing environmental noise and the effect of interferometer drift. We demonstrate the technique using a lock-in amplifier and a discrete time- and phase-tagging technique developed for low-flux measurements.

Read this article online: https://arxiv.org/abs/1910.04202

(Session 11 : Monday from 10:45am - 11:15am)


SQuInT Chief Organizer
Akimasa Miyake, Associate Professor

SQuInT Co-Organizer
Brian Smith, Associate Professor UO

SQuInT Program Committee
Postdoctoral Fellows:
Markus Allgaier (UO OMQ)
Sayonee Ray (UNM CQuIC)
Pablo Poggi (UNM CQuIC)
Valerian Thiel (UO OMQ)

SQuInT Event Co-Organizers (Oregon)
Jorjie Arden
Holly Lynn

SQuInT Event Administrator (Oregon)
Brandy Todd

SQuInT Administrator (CQuIC)
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director

Tweet About SQuInT 2020!