Program

SESSION 6: Neutral atoms (Pavilion I - III)

Chair: Grant Biedermann (Sandia)
8:30 am - 9:15 amCindy Regal, (JILA, Colorado)
Interfering and entangling individual neutral atoms

Abstract. Ultracold gases of bosons and fermions present a unique opportunity in quantum science to investigate the relation between strongly-correlated quantum matter and quantum information concepts. Increasingly experiments have turned to developing single-atom imaging and control to elucidate these connections. In our work we show that it is now possible to harness Bose statistics by independently preparing single rubidium atoms cooled to their motional ground state. By using optical tweezers to dynamically bring the atoms together we can study tunnel-coupled bosons with a new level of control. We observe the Hong-Ou-Mandel (HOM) effect with massive particles when we arrange for atom tunneling to play the role of a balanced beamsplitter. In another experiment, we utilize spin-exchange between the atoms to create entanglement, and we then are able to verify the entanglement of the atoms after spatially separating them. I will discuss the implication of these experiments for the assembly and control of larger quantum systems.

9:15 am - 9:45 amAdam Kaufman, Greiner group (Harvard)
Measuring entanglement entropy and local observables in a thermalizing many-body state

Abstract. Massive entanglement between the constituents of a many-body system is the defining feature of strongly correlated quantum systems. Recent theoretical developments point to the entropy of entanglement as a universal means to classify unusual quantum phases, such as spin liquids and topological phases. Despite its importance, there is no general scheme to experimentally verify entanglement in systems of interacting, delocalized particles. In this talk I will present an experimental scheme to probe entanglement in such itinerant systems through interference of two copies of a many-body state. Akin to Hong-Ou-Mandel interference of photons, this measurement performed with ultracold atoms in a quantum gas microscope probes the indistinguishability of quantum states. We directly measure quantum purity, second order Rényi entropy and mutual information for finite-sized Bose-Hubbard systems across the superfluid-insulator transition. More generally, our newly developed techniques can be used for detailed studies of disordered quantum systems or far-from-equilibrium dynamics. In recent experiments, we explore the evolution of quenched, isolated bosonic systems, where thermal ensembles appear to emerge from pure quantum states. We observe an approximate volume law scaling in the entanglement entropy and highlight its connection to the classical thermodynamic entropy, and we compare local measurements of the many-body state to the predictions of the eigenstate thermalization hypothesis.

SQuInT Chief Organizer
Prof. Akimasa Miyake
amiyake@unm.edu

SQuInT Co-Organizer
Prof. Elohim Becerra
fbecerra@unm.edu

SQuInT Founder
Prof. Ivan Deutsch
ideutsch@unm.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

Tweet About SQuInT 2016!