Full Program | Thursday | Friday | Saturday | Sunday | All Sessions

SESSION 2: Foundations - Alvarado "D"
Session Chair:
7:00pm-7:45pmRobert Spekkens, Perimeter Institute for Theoretical Physics (invited)
Formulating Quantum Theory as a Causally Neutral Theory of Bayesian Inference

Abstract. Quantum theory can be thought of as a noncommutative generalization of Bayesian probability theory, but for the analogy to be convincing, it should be possible to describe inferences among quantum systems in a manner that is independent of the causal relationship between those systems. In particular, it should be possible to unify the treatment of two kinds of inference: (i) from beliefs about one system to beliefs about another, for instance, in the Einstein-Podolsky-Rosen or ``quantum steering” phenomenon, and (ii) from beliefs about a system at one time to beliefs about that same system at another time, for instance, in predictions or retrodictions about a system undergoing dynamical evolution or undergoing a measurement. I will present a formalism that achieves such a unification by making use of “conditional quantum states”, which are noncommutative generalizations of conditional probabilities. I argue for causal neutrality by drawing a comparison with a classical statistical theory with an epistemic restriction. (Joint work with Matthew Leifer)

7:45pm-8:15pmYanbao Zhang, National Institute of Standards and Technology, Boulder
Asymptotically optimal data analysis for rejecting local realism

Abstract. Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of statistical p-values, where high violation corresponds to small p-values. We propose a prediction-based ratio (PBR) analysis protocol whose p-values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. If the prepared state does not vary in time, the p-values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, arXiv:quant-ph/0110137]. We find that the p-values of the former can be too small and are therefore not statistically valid, while those derived from the latter are sub-optimal. PBR $p$-values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details. This talk is based on the paper [Y. Zhang, S. Glancy, and E. Knill, arXiv:1108.2468, to be published in Phys. Rev. A].

8:15pm-8:45pmJibran Rashid, Institute for Quantum Information Science at the University of Calgary
Quantum Nonlocal Boxes Exhibit Stronger Distillability

Abstract.
Peter Høyer and Jibran Rashid {hoyer, jrashid}@ucalgary.ca

Introduction

We approach stronger that quantum correlations with a new perspective. The nonlocal box model (NLB) allows two spatially separated parties, Alice and Bob, to exhibit stronger than quantum correlations. Rather than considering a hypothetical box resource, we allow the spatially separated parties Alice and Bob, access to a trusted third party Charlie. Charlie is allowed to communicate with Alice and Bob without allowing communication between Alice and Bob. A natural generalization is to consider the case when Alice and Bob utilize quantum states for communicating with Charlie and he communicates back using quantum states as well.

We model Charlie as a quantum nonlocal box, abbreviated qNLB, which takes as input a joint quantum state and outputs a joint quantum state. A priori, such a model may not obey our non-signalling requirement since any unitary UAB not of the form UA⊗UB allows for signalling. It thus may appear that a quantum generalization of the NLB model would always allow for signalling, but this only holds true if we restrict the maps to be unitary. Quantum nonlocal boxes that satisfy the non-signalling requirement and allow for quantum states as output are possible when we drop the requirement of the box being unitary. Such boxes have previously been studied under the notion of causal maps, completely positive trace-preserving maps, and non-signalling operations. Here we initiate a systematic study of such boxes in terms of nonlocality.

Nonlocality distillation occurs if it is possible for Alice and Bob to concentrate the nonlocality in n copies of an imperfect NLB/qNLB to form a stronger NLB/qNLB. Given the apparent limited distillability of NLBs, we propose a new non-adaptive protocol for nonlocality distillation of qNLBs. As our main result, we show that qNLBs exhibit strictly stronger nonlocality distillation than NLBs, for non-adaptive distillation protocols. We prove our main result by setting up a semi-definite programming framework for analyzing non-adaptive protocols for qNLB distillation. We then use this framework to define and give a protocol for qNLB distillation and show that it asymptotically distills the class of correlated quantum nonlocal boxes to the value 3.098, whereas in contrast, the optimal non-adaptive parity protocol for classical correlated nonlocal boxes asymptotically distills to the value 3.0 (Figure 1). The protocol is also proven to be an optimal non-adaptive protocol for 1, 2 and 3 copies of qNLBs by constructing a matching dual solution for the semi-definite program.

Figure 1: (a) Distillation achievable for correlated NLBs by our protocol for qNLBs and the parity protocol for NLBs. (a) Value attained by a single copy of qNLB (solid line) and NLB (dotted line). (b) Distilled value attained for n copies of qNLBs (solid lines) and NLBs (dotted lines), for n = 2 and n = 100, respectively
http://pages.cpsc.ucalgary.ca/~jrashid/fig5.png

Motivation

A major component of the research on nonlocality can be linked to identifying a set of restrictions that produce physical theories of varying strength in terms of their correlations. From quantum strategies that violate Bell inequalities to the no-signalling principle, information causality, local quantum measurements and macroscopic locality, one of the goals is to obtain a useful understanding of the conditions that imply quantum correlations. These conditions serve as fundamental physical principles that guide the development of physical theories. One attempt to develop our understanding of the limits on nonlocality is via nonlocality distillation protocols.

The class of correlated NLBs are already known to be asymptotically distillable to a perfect NLB. This is only achieved by an adaptive protocol. In our current work we have shown that even if we restrict out attention to non-adaptive protocols, qNLBs offer improved distillation over NLBs. A generalization of our SDP approach that allows for adaptive protocols may reveal a similar improvement for adaptive protocols. This may imply distillability for correlations that are currently not known to be distillable and at the same time an increased understanding of correlations that violate principles such as information causality.

As a consequence of the work nonlocality distillation we propose a two-pronged approach for classifying correlations which are not known to satisfy the principle of macroscopic locality. We provide numerical evidence that correlations with non-trivial marginals which are not known to satisfy the macroscopic locality principle may be distillable even when corresponding correlations with trivial marginals are not. On the flip side, we argue that if reality does allow correlations that violate the principle, then nonlocality distillation could still be utilized to improve the possibility of detecting such a violation in the lab.