Full Program | Thursday | Friday | Saturday | Sunday | All Sessions

1:45pm-2:30pmJeremy OBrien, University of Bristol
Integrated quantum photonics

Abstract. Integrated quantum photonics K Aungskunsiri, D Bonneau, J Carolan, E Engin, D Fry, J Hadden, P Kalasuwan, J Kennard, S Knauer, T Lawson, L Marseglia, E Martin-Lopez, J Meinecke, G Mendoza, A Peruzzo, K Poulios, N Russell, A Santamato, P Shadbolt, J Silverstone, A Stanley-Clark, M Halder, J Harrison, D Ho, P Jiang, A Laing, M Lobino, J Matthews, B Patton, A Politi, M Rodas Verde, P Zhang, X-Q Zhou, M Cryan, J Rarity, M Thompson, S Yu, J O達rien & non-Bristol collaborators Centre for Quantum Photonics, H.H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol www.phy.bris.ac.uk/groups/cqp Quantum information science aims to harness uniquely quantum mechanical properties to enhance measurement and information technologies, and to explore fundamental aspects of quantum physics. Of the various approaches to quantum computing [1], photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level [2,3]. Encoding quantum information in photons is also an appealing approach to quantum communication, metrology (eg. [4]), measurement (eg. [5]) and other quantum technologies [6]. However, the implementation of optical quantum circuits with bulk optics has reached practical limits. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability [7]. Here we report high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference and a controlled-NOT logic gate [8]. We have demonstrated controlled manipulation of up to four photons on-chip, including high-fidelity single qubit operations, using a lithographically patterned resistive phase shifter [9]. We have used this architecture to implement a small-scale compiled version of Shor痴 quantum factoring algorithm [10], demonstrated heralded generation of tunable four photon entangled states from a six photon input [11], a reconfigurable two-qubit circuit [12], and combined waveguide photonic circuits with superconducting single photon detectors [13]. We describe complex quantum interference behavior in multi-mode interference devices with up to eight inputs and outputs [14], and quantum walks of correlated particles in arrays of coupled waveguides [15]. Finally, we give an overview of our recent work on fundamental aspects of quantum measurement [16,17], diamond [18,19] and nonlinear [20,21] photon sources, fast manipulation of single photons [22]. [1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. OBrien, Nature 464, 45 (2010). [2] J. L. O達rien, Science 318, 1567 (2007). [3] R. Okamoto, J. L. O達rien, H. F. Hofmann and S. Takeuchi Proc. Natl. Acad. Sci. 108, 10067 (2011) [4] T. Nagata, R. Okamoto, J. L. O達rien, K. Sasaki, and S. Takeuchi, Science 316, 726 (2007). [5] R. Okamoto, J. L. O達rien, H. F. Hofmann, T. Nagata, K. Sasaki, S. Takeuchi, Science 323, 483 (2009). [6] J. L. O達rien, A. Furusawa, and J.Vuckovic, Nature Photon. 3, 687 (2009). [7] A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O達rien, Science 320, 646 (2008). [8] A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O達rien, Appl. Phys. Lett. 97, 211109 (2010) [9] J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O達rien, Nature Photon. 3, 346 (2009). [10] A. Politi, J. C. F. Matthews, and J. L. O達rien, Science 325, 1221 (2009). [11] J. C. F. Matthews, A. Peruzzo, D. Bonneau, and J. L. O達rien, Phys. Rev. Lett. 107, 163602 (2011) [12] P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, J. L. O'Brien, Nature Photon. doi:10.1038/nphoton.2011.283 [13] C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O達rien, Appl. Phys. Lett. 96, 211101 (2010). [14] A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O達rien, Nature Comm. 2, 224 (2011) [15] A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O達rien, Science 329, 1500 (2010) [16] A. Laing, T. Rudolph, and J. L. O達rien, Phys. Rev. Lett. 102, 160502 (2009). [17] X-Q Zhou, TC Ralph, P Kalasuwan, M Zhang, A Peruzzo, BP Lanyon, and JL O達rien, Nature Comm. 2 413 2011 [18] J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, and J. G. Rarity, Appl. Phys. Lett. 97, 241901 (2010) [19] L. Marseglia, J. P. Hadden, A. C. Stanley-Clarke, J. P. Harrison, B. Patton, Y.-L. D. Ho, B. Naydenov, F. Jelezko, J. Meijer, P. R. Dolan, J. M. Smith, J. G. Rarity, J. L. O'Brien, Appl. Phys. Lett. 98, 133107 (2011) [20] C. Xiong, et al. Appl. Phys. Lett. 98, 051101 (2011) [21] M. Lobino, et al, Appl. Phys. Lett. 99, 081110 (2011) [22] D Bonneau, M Lobino, P Jiang, CM Natarajan, MG Tanner, RH Hadfield, SN Dorenbos, V Zwiller, MG Thompson, JL O'Brien Phys. Rev. Lett.; arXiv:1107.3476