<

All Abstracts | Poster Abstracts | Talk Abstracts

Improved Error-Scaling for Adiabatic Quantum Evolutions

Nathan Wiebe, Institute for Quantum Computing

(Session 13 : Sunday from 11:15am-11:45am)

Abstract. We present a new technique that improves the scaling of the error in the adiabatic approximation with respect to the evolution duration, thereby enabling the design of more efficient adiabatic quantum algorithms and adiabatic quantum gates. Our method is conceptually different from previously proposed techniques: it exploits a commonly overlooked phase interference effect that occurs predictably at specific evolution times, suppressing transitions away from the adiabatically transferred eigenstate. Our method can be used in concert with existing adiabatic optimization techniques, such as local adiabatic evolutions or boundary cancellation methods. We perform a full error analysis of our phase interference method along with existing boundary cancellation techniques and show a tradeoff between error-scaling and experimental precision. We illustrate these findings using two examples, showing improved error-scaling for an adiabatic search algorithm and a tunable two-qubit quantum logic gate.