Full Program | Thursday Tutorials | Friday | Saturday | Sunday

SESSION 8: Quantum Computing II: Theory
Session Chair: Howard Barnum
13:30-14:15Giacomo Mauro D'Ariano, Università di Pavia (invited)
Quantum Circuits Architecture

Abstract. A method method for optimizing quantum circuits architecture is presented. The method is based on the notion of "quantum comb", which describes a circuit board in which one can insert variable subcircuits, and mathematically corresponds to a generalization of the notions of quantum operation and POVM. The method allows to address novel kinds of quantum processing tasks, such as optimal storing-retrieving and cloning of channels, and optimal quantum circuit board testers.

14:15-14:45Robert Raussendorf, University of British Columbia
On measurement-based quantum computation with the toric code states

Abstract. We study measurement-based quantum computation (MQC) using as quantum resource the planar code state on a two-dimensional square lattice (planar analogue of the toric code). It is shown that MQC with the planar code state can be efficiently simulated on a classical computer by mapping to non-interacting fermions via the planar Ising model.

J-Ref: S. Bravyi and R. Raussendorf, Phys. Rev. A 76, 022304 (2007)

14:45-15:15Barry Sanders, University of Calgary
Quantum walk on a circle in phase space via superconducting circuit

Abstract. We show how a quantum walk, with a single walker and controllable decoherence, can be implemented for the first time in a quantum quincunx created via superconducting circuit quantum electrodynamics (QED). Two resonators are employed to provide simultaneously fast readout and controllable decoherence over a wide range of parameters. The Hadamard coin flip is achieved by directly driving the cavity, with the result that the walker jumps between circles in phase space but still exhibits quantum walk behavior over 15 steps.