All Abstracts | Poster Abstracts | Talk Abstracts | Tutorial Abstracts

Engineering coherent quantum states in superconducting systems

Raymond Simmonds, National Institute of Standards and Technology

(Session 7 : Saturday from 10:45-11:30)

Abstract. Wouldn't it be great to custom design your own individual quantum systems, then connect them up in interesting arrangements and play around with quantum mechanics? Recently, we have taken the first step towards creating and controlling quantum information using superconducting circuits. We have observed for the first time a coherent interaction between two superconducting “atoms” (quantum bits or qubits) and an LC cavity formed by a ~7 mm long coplanar waveguide resonant at ~9 GHz. When either qubit is resonant with the cavity, we observe the vacuum Rabi splitting of the qubit's spectral line. In a time-domain measurement, we observe coherent vacuum Rabi oscillations between either qubit and the oscillator. Using controllable shift pulses, we have shown coherent transfer of a arbitrary quantum state. We first prepare the first qubit in a superposition state, then this state is transferred to the resonant cavity and then after a short time, we transfer this state into the final qubit. These experiments show that developing custom designed quantum systems on chip is possible, opening up new possibilities for studying quantum mechancis and information science.