All Abstracts | Poster Abstracts | Talk Abstracts | Tutorial Abstracts

Superoperator Dynamics Approach for Identification and Control of Hamiltonian Systems

Ali Rezakhani, University of Southern California Center for Quantum Information Science and Technology

(Session 14 : Sunday from 13:30-14:00)

Abstract. Characterization and control of open quantum systems are among the fundamental tasks/challenges in quantum physics and quantum information science. In particular, there is much interest in the identification of quantum systems which have unknown interactions with their embedding environment. Quantum process tomography is known to be a general method for characterization of quantum dynamical processes, through an inversion of experimental data obtained from a complete set of state tomographies. In an earlier work we demonstrated that the utilization of quantum error detection techniques leads to the direct estimation of all independent parameters of a superoperator. Motivated by that approach, we now introduce new dynamical equations for superoperators – leading to novel ways for Hamiltonian identification and control of open quantum systems. As an application, we show that this method could lead to efficient identification of certain properties of some sparse Hamiltonians. We also briefly discuss some possible applications to open-loop/learning control of Hamiltonian systems.