All Abstracts | Poster Abstracts | Talk Abstracts | Tutorial Abstracts

Scalable Traps and Novel Gates for Quantum Information Processing with Ions

Jason Amini, National Institute of Standards and Technology

(Session 7 : Saturday from 11:30-12:00)

Collaborators: J. M. Amini, R. B. Blakestad, J. J. Bollinger, J. Britton, K. R. Brown, J. Chou, R. J. Epstein [a], J. P. Home, D. B. Hume, W. M. Itano, J. D. Jost, E. Knill, C. R. Langer [b], D. Leibfried, C. Ospelkaus, T. Rosenband, S. Seidelin [c], A. VanDevender, J. H. Wesenberg [d], and D. J. Wineland.

Abstract. Two of the key goals for the ion trap community are scaling ion traps to hold and manipulate the numbers of qubits needed for useful algorithms and improving the quality of all operations. At NIST, we are testing an 18-zone two-layer trap with an "X" intersection and employing microfabrication techniques to simplify the design and construction of future traps [1]. Combined with novel optical and magnetic gates [2], sympathetic cooling [3], and quantum enabled read-out [4] utilizing different ion species, algorithms with large numbers of ions may become tractable. We have also demonstrated cooling of a microcantilever using an RF resonant circuit [5] and are pursuing the coupling of ions to cantilevers for cooling and entanglement.

[1] See the poster by J. Britton, et al.
[2] See the poster by C. Ospelkaus, et al. See also, D. Leibfried, et al., Phys. Rev. A 76, 032324 (2007).
[3] See the poster by J. Jost, et al.
[4] See the poster by D. Hume, et al.
[5] K.R. Brown, et al., Phys. Rev. Lett. 99, 137205 (2007).

Acknowledgements: Work supported by IARPA and NIST.

[a] Current address: Areté Associates, Longmont, CO 80501, USA
[b] Current address: Lockheed Martin, Huntsville, AL, USA
[c] Current address: University of Grenoble, France.
[d] Current address: Oxford University, U.K.