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Radial Density Encoding of Molecular Environments:

Neural Networks and Spherical DFT

Abstract

The molecular environment is defined by complex quantum chemical relationships that
are challenging to model, especially for large systems. This work introduces a scalable
neural network-based framework for representing molecular environments using compact,
physically-derived, radially symmetric atomic electron densities. Motivated by an ensem-
ble atom-in-molecule (AIM) formalism and built on the foundation of density functional
theory (DFT), we develop a radial basis function neural network (RBF-NN) that charac-
terizes the electron density of a molecule as a superposition of spherical, atom-centered ba-
sis functions derived from isolated atomic charge and excited states. We demonstrate that
the RBF-NN can resolve charge transfer in diatomic systems, including LiF and HF, track-
ing changes in bonding character as a function of internuclear separation, and highlighting
how quantum entanglement between atoms is encoded within the global electron density.
Finally, we introduce a formal extension to the spherical DFT analog of the Hohenberg-
Kohn theorem of density functional theory, by taking advantage of mathematical methods
of distance geometry.
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1 Introduction and Background

It is often the case in describing physical phenomena that there is a tradeoff between

the accuracy of a model and the generality with which it can be applied. This is especially

true when dealing with quantum mechanical systems. For small chemical systems, such

as isolated atoms and small molecules, wavefunction-based methods—i.e. solving the N -

particle Schrödinger wave equation, Eq. (1)—can yield highly accurate results.

HΨ(r⃗1, r⃗2 . . . r⃗N) = EΨ(r⃗1, r⃗2 . . . r⃗N). (1)

However, these methods become too computationally costly for large systems due to how

they scale. This comes down to the fact that to solve for the wavefunction Ψ(r⃗1, r⃗2 . . . r⃗N)

of a system of N electrons, the solution of a 3N -dimensional equation is required (e.g., 30

dimensions are required to represent a 10 electron system) [1]. The issue of scalability be-

comes even more significant when considering systems with multiple atoms, each with its

associated electrons. One of the most basic wavefunction methods which does not include

a representation for quantum mechanical correlation effects, single-determinant Hartree-

Fock, scales as O(N4) [2]. For even more complex wavefunction methods, including the

post-Hartree Fock, Møller–Plesset perturbation theory methods MP2 and MP4, which add

corrections for electron correlation, this scaling becomes even more unfavorable, O(N7) [3].

As the number of electrons grows in a system, the number of determinants that need to be

included in the wavefunction representation increases exponentially [3]. Thus, if modeling

a protein is desired, a system composed of tens of thousands of atoms, wavefunction meth-

ods are no longer feasible. Alternative, more scalable methods are required.

One pathway toward improving scalability is to reconsider the structure of the repre-

sentation itself. In atomic systems, the electron density exhibits a high degree of radial

symmetry around each nucleus, with asymptotic constraints applicable at both short and
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long range radial distances from the atomic nucleus [4, 5]. By focusing on this symme-

try and incorporating angular corrections, it becomes possible to reduce the complexity

of a molecular system without discarding chemically relevant information. A representa-

tion built from radially symmetric components can compress the essential features of a

molecular system. This not only lessens the computational burden but also opens the door

to more interpretable models. In contrast to methods that treat the electron density as

a general function of three spatial dimensions [6], the radial framework allows for local-

ized descriptions that naturally scale with the number of atoms rather than the size of a

surrounding grid. As system size increases, this shift in perspective becomes increasingly

advantageous. An analysis must then be conducted into order to determine if such radial

representations can be as successful as traditional, 3D wavefunction methods, in represent-

ing the molecular environment.

To carry out this analysis, we explore the use of an ensemble atom-in-molecule formu-

lation, founded in density functional theory, which decomposes a total molecular density

distribution into a sum of radially symmetric atomic state densities. We also investigate

spherical density functional theory and show how, through established methods in distance

geometry, 3D nuclear location information is retained despite sphericalization of the total

molecular density distribution.

1.1 Density Functional Theory (DFT)

Density functional theory (DFT) is a quantum mechanical method used to study the

electronic structure of many-electron systems, including atoms, molecules and solids. Un-

like wavefunction methods, its computational complexity scales as O(N3) [7]. DFT relies

on the Hohenberg-Kohn (HK) theorem which states that the ground-state energy of a

many-electron system is uniquely determined by its electron density, ρ(⃗r) [8]. This replaces

the solution of the Schrödinger wave equation (SWE) with the minimization of a universal
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energy functional Ev[ρ] with respect to the density [8]. In practice, DFT is implemented

by solving the coupled, single-particle Kohn-Sham equations [9], which are formally equiv-

alent to the original HK energy functional minimization:

[
−ℏ2∇2

2m
+ veff(r)

]
ϕi(r) = ϵiϕi(r), i = 1, . . . , N , (2)

where veff(r) is given by:

veff(r) = vext(r) + vH(r) + vxc(r). (3)

Though the coupled equations resemble the SWE, the single-particle equations involve

N Kohn-Sham orbitals, ϕi(r), with their corresponding orbital energies, ϵi. The total den-

sity of the N -particle system is related to the Kohn-Sham orbitals as:

ρ(r) =
N∑
i=1

|ϕi(r)|2. (4)

As seen in Eq. (3), the Kohn-Sham potential, veff(r), consists of three terms: the exter-

nal potential, vext(r), the Hartree potential, vH(r), and the exchange-correlation potential,

vxc(r). The external potential is defined by the configuration of the atoms in the system,

each with nuclear charge Zi and nuclear location Ri, according to:

vext(r) =

NA∑
i=1

−Ze2

|r−Ri|
. (5)

The Hartree potential is the classical electron electrostatic potential:

vH(r) =

∫
ρ(r′)

|r− r′|
dr′. (6)

The exchange-correlation potential includes statistical exchange effects due to the

Pauli exclusion principle and electron correlation effects, reflecting quantum spatial in-

teractions due to the electron-electron Coulomb interaction. Unlike the external poten-
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tial and the Hartree potential, the exchange-correlation potential is not known explicitly.

The exchange-correlation potential is related to the exchange-correlation energy functional,

Exc[ρ], which is a component of the total energy functional in Kohn-Sham density func-

tional theory. It is defined as the functional derivative of Exc[ρ] with respect to the elec-

tron density:

vxc(r) =
δExc[ρ]

δρ(r)
. (7)

The exchange-correlation potential is precisely the component of the original SWE

which describes the quantum mechanical behavior of the interacting electrons that DFT

must replace. DFT as a formal theory provides an exact quantum mechanical solution for

the properties of a many-electrion molecular system just as the SWE does; however, in

practice, approximation of the exchange-correlational potential is required.

The earliest approximation to Exc[ρ], proposed in the original HK paper [9], was the

local density approximation (LDA), which models Exc[ρ] as a locally homogeneous electron

gas. Numerous refinements and alternative approximations have been proposed, includ-

ing the celebrated Jacob’s ladder family of functionals introduced by Perdew and cowork-

ers [10]. These functionals are based on successively higher-order gradients of the electron

density and may include a fraction of some exact, Hartree-Fock exchange [11]. Functionals

of this type are referred to as ‘hybrid’ [12]. The functionals utilized in the present work in-

clude B3LYP [13, 14], PBE0 [15], and wB97XD [16, 17].

Despite the unavoidable approximation of the exchange-correlation potential, DFT

has been shown to yield remarkably accurate results for diverse, many-electron systems at

much lower computational cost than the solution of the SWE. Unlike solving the SWE,

DFT enables the accurate calculation of properties of both large molecules and periodic

solids. However, despite its widespread use and constant improvements, current approxi-

mations for the exchange-correlation potential still struggle to accurately describe certain

classes of systems and properties, including charge transfer and bond formation and break-

ing [12]. SWE methods that are more successful at modeling these properties do not scale
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to large chemical systems with more than 10 atoms. Work done in this thesis seeks to ad-

dress this issue through the application of an atom-in-molecule ensemble representation

[18] to molecular system, with radial basis functions motivated in part by spherical DFT.

1.2 Atom-in-Molecule Decompositions

Fundamental to chemistry and materials science is the knowledge that molecules are

comprised of atoms. Understanding a molecule’s properties depends on the electronic con-

text of the atoms that constitute it. However, there is no universally accepted definition

for what defines an atom within a molecule [19–21]. Different atom-in-molecule decompo-

sition methods have been proposed for decomposing molecules into chemically-reasonable

atomic subsystems, as illustrated schematically for a heteronuclear diatomic in Fig. 1.

Figure 1: Schematic of an atom-in-molecule decomposition for a simple diatomic.

In general, implementing an atom-in-molecule decomposition involves partitioning the

total molecular density, ρmol(⃗r), into multiple pseudoatoms in such a way that no density is

double-counted. The sum over all psuedoatom densities ρ∗i (⃗r) must equal the original total

molecular density ρmol(⃗r) at every point r⃗ in space [20]:

ρmol(⃗r) =
Natoms∑
i=1

ρ∗i (⃗r). (8)

In this way, the total electron density and total charge of the molecular system are
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conserved, while allowing density to be assigned to a specific pseudoatom. The decompo-

sition into pseudoatom components provides insight into quantum mechanical information

contributed by each atom in the overall system.

It is important to note that this partitioning is not unique, and the properties by which

the pseudoatoms are defined varies depending on the choice of atom-in-molecule method.

Since an atom-in-molecule is not a physically-observed object but a conceptual tool, cer-

tain partitioning schemes may be more useful in specific contexts [20]. Some well-known

atom-in-molecule decompositions base the partitioning scheme on atomic orbitals [22, 23],

spatial positioning [24], or an analysis of the electron density distribution [25, 26]. The fol-

lowing subsections review atom-in-molecule methods which utilize the electron density as

the foundation for their pseudoatom partitioning. As the electron density distribution de-

termines the ground state energy and all quantum mechanical observables in DFT [8], the

partitioning scheme described in this work uses the electron density as its foundation.

1.2.1 Bader’s Topological Approach

One commonly-used atom-in-molecule decomposition is the Bader formulation, which

defines the atom-in-molecule using a topological approach [25, 27]. Bader’s atom-in-molecule

implements a hard spatial partitioning that defines electron density subsystems for each

atom in the molecule. These partitions, known as basins of attraction, are shaped by the

pull of the various nuclear charges which direct the surrounding electron density toward

each nucleus. As is illustrated in Fig. 2(b), the molecule is partitioned with hard dividing

lines which trace the valleys of the density’s topology. Given a molecular density ρmol(⃗r),

atoms are assigned to subsystems by partitioning 3D space according to zero-flux surfaces

at which ∇ρmol(⃗r) · n̂ = 0 [19]. A 2D example of this partitioning along a zero-flux surface

is seen in Fig. 2(a).

Once the zero-flux surfaces have been used to assign each atom i to its unique region
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Figure 2: Bader’s topological atom-in-molecule decomposition of the electron density of
LiF, with 2D (a) and 3D (b) perspectives. The zero-flux surface is depicted by a black
solid line in (a). From [27].

of space, Ωi, the partial charge, qi, on the atom can be computed as:

qi = Zi −
∫
Ωi

ρ∗i (⃗r) d⃗r, (9)

where Zi is the nuclear charge of the atom. Since the zero-flux surfaces are physically-

based and determined from the true electron density distribution, Bader’s atoms-in-molecule

definition has been found to be successful in modeling charge transfer [28]. It also results

in more chemically-reasonable charge assignments than other methods, taking chemical

electronegativity into account [29].

Although visually elegant and physically-based, the mathematical implementation of

Bader’s technique [30] is computationally intensive. Calculating the Laplacian at every
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point in space becomes unfeasible for very large systems. In general, due to the global

molecular perspective needed to perform the spatial partitioning, Bader’s method can only

be applied to relatively small systems [30]. Additionally, by assigning electrons to ‘belong’

to specific atoms in the molecule, Bader’s method is inconsistent with our physical under-

standing of electron indistinguishability and entanglement in the larger molecular system.

In this respect, the hard spatial partitioning imposed by Bader’s method is limited in its

representation of a chemical environment.

1.2.2 The Hirshfeld and Iterative Hirshfeld Atoms-in-Molecule

The Hirshfeld partitioning method [26] functions by assigning a fraction of the density

to each atom at each point in space in a molecular system. This approach is often referred

to as the “stockholder” partitioning method because it distributes the total electron den-

sity based on the proportion each atom contributes — analogous to a shareholder receiving

a fraction of a company’s total assets. For a bonded atom i in a molecule with total den-

sity ρ(r), the ith Hirshfeld atom-in-molecule density, or proatom density, is defined as:

ρi(r) =

[
ρ0i (r)

ρ0(r)

]
ρ(r), (10)

where ρ0(r) is the promolecular density, the sum of the isolated atom densities ρ0i (r) at

each point in space:

ρ0(r) =

NA∑
i=1

ρ0i (r). (11)

Hirshfeld is a relatively simple atom-in-molecule method and thus can scale to large

systems. However, the use of isolated, neutral atomic densities in the promolecular refer-

ence means that the method cannot capture charge transfer effects between atoms [31]. To

address this limitation, Bultinek, Ayers and co-workers proposed the Iterative Hirshfeld

(Hirshfeld-I) method [20, 32]. In this approach, the initial Hirshfeld atomic densities are
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iteratively refined by including a, charge-dependent reference state in the proatom density

representation.

Iterative Hirshfeld models charge transfer by allowing atomic densities to adjust in re-

sponse to their environment, providing more physically meaningful charge distributions

compared to the original method. However, like Bader’s decomposition, it requires a holis-

tic decomposition of the total density at each iteration, thus limiting scalability. In ad-

dition, the method has been found to exhibit instabilities and yield unphysical atom-in-

molecule densities in test systems [20, 33]. Consequently, Heidar-Zadeh an co-workers

have recently proposed a modified, variational Hirshfeld partitioning approach [33]. In

this method, the proatoms are constructed as a linear combination of basis densities, with

weights optimized by minimizing the divergence between the promolecular and true molec-

ular densities. In the initial instantiation of the model, the authors utilize the Kullback-

Liebler divergence measure, as in the derivation of the original Hirshfeld method by Nale-

wajski and Parr [34]. This has the effect of minimizing the distortion of the proatom den-

sities away from their isolated atom counterparts [33], in contrast to the DFT ensemble

approach utilized here.

1.2.3 The Ensemble Atom-in-Molecule Framework

To address the goal of representing charge transfer and charge distortion with a atom-

in-molecule formulation that can be scaled to large systems an ensemble DFT framework

has been proposed by Atlas, Valone, and co-workers as the basis for an atom-in-molecule

decomposition [4, 18, 35]. This involves constructing weighted superpositions of isolated

electron densities for individual ground, excited and charge states of all constituent atoms

of the molecule [5]. This is visualized in Fig. 3 for an exemplar atom A, where the density

contributions of individual states, like the neutral (A0), cation (A1+), anion (A1−), and

excited states (A
′
), are combined to create an ensemble superposition. All of these states
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Figure 3: Schematic representation of the superposition of charge and excited states con-
tributing to the pseudoatom density in the ensemble atom-in-molecule framework. Figure
from [18].

belong to the same atom, making the ensemble formulation an atomistic view of a molecu-

lar system.

The ensemble atom-in-molecule satisfies the defining atom-in-molecule constraint given

in Eq. (8), where the ith atom’s contributing pseudoatom density, ρ∗i (⃗r), is given by [18]:

ρ∗i (⃗r) =

Zi−1∑
j=−∞

αijϱij (⃗r), (12)

where the ith pseudoatom density ρ∗i (⃗r) is determined by the contributions of the jth charge

state density, ϱij (⃗r), with corresponding weight αij. The excited state ensemble densities

ϱij (⃗r) for each ion are defined as:

ϱij (⃗r) =
∞∑
k=1

βijkρijk (⃗r), (13)

where ρijk (⃗r) is the density of the kth eigenstate of the jth ion of atom i. Thus, ρ∗i (⃗r) can

be expressed as:

ρ∗i (⃗r) =
∑
j,k

ωijkρijk (⃗r), (14)
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where

ωijk = αijβijk. (15)

By optimizing the ωijk in the superposition [21], the total density ρ̃(⃗r) of the molecular

system in the ensemble formulation is given by:

ρ̃(⃗r) =

NA∑
i=1

ρ∗i (⃗r). (16)

Note that, in contrast to the Bader and Hirshfeld decompositions, the ensemble AIM for-

mulation can only approximate the total density, ρ̃(⃗r) ≈ ρ(⃗r). This is because it relies

on fixed atomic basis densities, ρijk (⃗r), combined through ensemble weights. As a con-

sequence, interatomic electric correlations are not explicitly described by the superposi-

tion [18]. Nevertheless, as will be seen in this present work, the ensemble formulation has

proven remarkably successful in representing bond formation and breaking in the initial

systems to which it has been applied.

The approximation for the total density does allow for the calculation of the effective

charges of individual atoms in the molecule, which can then be compared across atom-in-

molecule partitioning methods. Analogous to Eq. (9), the effective charge is calculated as:

qi = Zi −
∫

ρ∗i (⃗r) dr, (17)

where the atom-in-molecule density is now integrated over all space. Note that the ensem-

ble formulation allows electron density to be ‘shared’ among all atoms in the molecule,

rather than being subject to strict spatial assignment, as is the case in Bader’s approach.

In general, the calculation of the effective charge can be used in the assessment of the

ability for an atom-in-molecule method to model charge transfer. The effective charges on

each atom can be calculated and compared to effective charges predicted by other atom-in-

molecule formulations.
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In practice, the basis densities used in the ensemble formulation are spherically aver-

aged, resulting in densities that are simple functions of the radial distance from each nu-

clear center. The superposition of states that defines the total molecular density, ρ̃(⃗r), is

therefore composed of a sum of radial functions. This is a further approximation to the

total density in addition to the ensemble representation of Eq. (14). The rationale for in-

troducing this approximation is discussed in Sections 2 and 5 below.

The motivation for modeling the electron density extends beyond evaluating effective

charges. The electron density, ρ(r⃗), is a fundamental observable in quantum mechanics

that determines the ground-state energy of a many-electron system [8, 36]. It is directly

related to the many-electron wavefunction through the relation:

ρ(r⃗) = N

∫
|Ψ(r⃗, r⃗2, . . . , r⃗N)|2, dr⃗2 . . . dr⃗N , (18)

where the integration is performed over all electron coordinates except one to yield the

probability density distribution for finding an electron at position r⃗ [36]. This density con-

tains all the information needed to determine the chemical and physical properties of a

system composed of atoms and electrons, including structure, reactivity, and bonding. As

such, it is important for modeling dynamical force fields [18]. Additionally, because ρ(r⃗)

is a measurable quantity in experiments such as nuclear magnetic resonance (NMR) [37],

building accurate, interpretable models of the density has relevance well beyond theory.

In this context, the ensemble AIM framework provides a way to represent and interpret

molecular electron densities across systems, offering both physical insight and practical

utility.
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2 Radial Basis Function Neural Networks (RBF-NN)

2.1 Theoretical Foundation

In order to construct the ensemble representation of a given molecular density, de-

termine the corresponding ensemble weights of each contributing atom, and compute ef-

fective charges according to Eq. (17), we utilize a Radial Basis Function neural network.

Neural networks (NNs) are computational models composed of interconnected nodes or-

ganized in layers, originally inspired by the structure and function of neurons in the hu-

man brain [38]. Each artificial neuron in a neural network receives input signals, processes

them through weighted connections and an activation function, and produces an output

that is transmitted to other neurons, thereby mimicking the way biological neurons trans-

mit information. The movement of information in a feedforward NN design is illustrated

in Fig. 4, where input data is propagated sequentially through successive layers toward

the output. During the training process, the network learns by adjusting the weights on

each connection, typically using backpropagation [39, 40], a method that computes an er-

ror function, or loss function, with respect to the network weights, and propagates these

errors backward through the network layers to update the weights accordingly [38]. This

loss function evaluates the accuracy of optimized weights by determining the difference

between a current prediction and a target, training set of data. NNs are widely used for

tasks including classification and regression, where traditional algorithms struggle to cap-

ture nonlinear and high-dimensional relationships [41].

Radial Basis Function neural networks (RBF-NNs) are a special type of neural net-

work that utilize a single hidden layer. As their name suggests, RBF-NNs employ radial

functions as the foundation for their node activation functions, which define the output

of each node. RBF-NNs have been shown to be universal function approximators : a feed-

forward network with a single hidden layer of non-constant, bounded, and continuous ac-
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Figure 4: Schematic of a feedforward neural network. Information is input through the
node layer on the left and processed in a hidden layer(s) with nodes 1 . . . n0 and weighted
interconnections indicated by arrows. The output is then given through an output layer.
After [41].

tivation functions can approximate any continuous function on a compact subset of Rn to

arbitrary precision, provided that a sufficient number of neurons are used [42, 43]. This re-

sult implies that RBF-NNs, despite their architectural simplicity, are capable of learning

highly nonlinear mappings by effectively projecting input data onto a latent space.

Most recently, when machine learning is used or discussed in the literature, the sub-

ject is so-called deep neural networks. Deep neural networks (DNNs), including modern

architectures such as transformer networks [44], consist of many hidden layers with nonlin-

ear activation functions [45]. In DNNs, latent spaces are constructed progressively across

many layers, with each layer transforming its input into more abstract representations

that capture complex patterns and relationships [46]. This depth enables DNNs to model

highly nonlinear and global structures in data but comes at the cost of increased computa-

tional complexity and a large number of parameters that require extensive training. These

14



Figure 5: Example of an RBF-NN structure. Here Gaussians are used as the activation
functions for the RBF neurons, representing radial information. Figure from [50].

DNNs also require extremely large datasets for training, as exemplified by the transformer-

based AlphaFold model of protein folding [47, 48].

In contrast, RBF-NNs approach both network design and latent space construction in

a fundamentally different way. Instead of stacking multiple layers to create hierarchical

representations, RBF-NNs employ a single hidden layer made up of radial basis functions

centered at specific 3D points defined by the input data. In this way, RBF-NNs involve lo-

calized latent spaces, or embedding spaces, that encode distance-based relationships. Each

neuron in an RBF-NN activates according to the distance between the input and the node

centers [49]. The use of a single layer significantly reduces computational and architectural

complexity of the NN design in comparison to DNNs. Most commonly, RBF-NN utilize

Gaussian basis functions at their nodes, as illustrated in Fig. 5. However, other radial ba-

sis functions, including exponential decay functions of the form α exp(−βr) can also be

used as activation functions.

Radial basis functions also differ from DNNs in how training and testing are used to

determine information regarding a data set. Classically, DNNs are used in research by
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first training the network, and calibrating its hyperparameters, on a extensive training

set. After the network has learned from this training set, and the neural network hyper-

parameters have been fixed, it can be applied to data outside the training set. This way,

the DNN learns underlying patterns and structure in the training set data and can then

apply this understanding to any new, unseen data. This differs from an RBF-NN working

as a universal function approximator, as is the case in this work. The focus is on training

the RBF-NN to analyze and extract information from the training set itself, rather than

developing a model for generalization beyond it. Unlike DNNs, where the primary goal

is to optimize a representation that can extend beyond the training data, the purpose of

training an RBF-NN is to construct an explicit functional mapping that encapsulates the

information contained in the training set.

2.2 Radial Basis Functions for Representing Radial Densities

The RBF-NN architecture provides a compact, physics-based representation of a molecule.

Each node’s activation function is analytically fitted to the spherically-averaged quantum

mechanical electron density distribution of a particular atomic state [4] — neutral, cation,

anion, or excited — thus embedding prior knowledge of atomic behavior directly into the

network architecture. For instance, Fig. 6 displays the spherically-averaged electron den-

sity distribution for the charge states of lithium and fluorine. The procedure required to

generate these radial distribution functions will be detailed in Section 3.2.

The spherically-averaged electron density distributions, as illustrated in Fig. 6, are fit

to radial distribution functions of the form [4, 5]:

M(r) = A0e
−2Zr + B0r

2(β+ζr)e−2αr + C0(m− Zr)2e−2γr + D0Z
2r2e−2ηr. (19)

These analytical fits to the radial distributions of the electron densities for each state of

each atom in a molecule are then used as the activation functions at each node in the
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Figure 6: Radial distribution functions of the neutral and charge states of (a) lithium and
(b) fluorine. From [4, 5].

RBF-NN. They are shifted spatially to be centered on the nuclear locations of each atom

in the molecule. The centering of the RBF activation functions arises naturally due to the

physical nature of the problem, eliminating the need for additional RBF center identifica-

tion techniques commonly required in standard RBF-NNs. In conventional applications,

RBF-NNs rely on methods such as k-means clustering to determine the optimal placement

of the basis function centers, as their locations are not inherently known [51, 52]. Poor

center selection can lead to inefficient function approximation and requires additional pro-

cessing of training data. However, in the present case, the radial basis functions are by

definition centered on the nucleus of each atom. This removes the ambiguity associated

with center placement and ensures that the activation functions are physically meaningful

representations of the molecular system.

The activation functions can then be used to form the psuedoatom density, ρ∗i (r), through

the weighted superposition (Eq. (14)). This is done for each atom in the molecular sys-

tem. For a heteronuclear diatomic AB, the pseudoatom densities for each atom can be ex-
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pressed as:

ρ∗A(rA) = wA0

neutralM
A0

(rA) + wA+1

cationM
A+1

(rA) + wA−1

anionM
A−1

(rA)

ρ∗B(rB) = wB0

neutralM
B0

(rB) + wB+1

cationM
B+1

(rB) + wB−1

anionM
B−1

(rB), (20)

where rA and rB are the radial distances from the nucleus of atom A and B respectively

to a point r⃗ in space corresponding to the molecular density ρAB(r⃗). Each atom has a set

of radial distribution functions, MA0
,MA+1

,MA−1
, associated with each state of the atom,

i.e. A0,A+1,A−1. These functions are of the form of Eq. (19) but with different, optimized

parameters that define each state’s radial density distribution. The radial distribution

functions are each associated with a weight, MA0
,MA+1

,MA−1
that specify the contri-

bution of each state’s electron density distribution to the overall atomic electron density,

ρ∗A(rA), as designated by Eq. (14).

The weights, {ωi}, determining the optimal superposition of states for each pseudoatom

density that provide the best approximation to a given molecular density are found by

training the neural network. Once these weights have been determined, the ensemble atom-

in-molecule estimate of the molecular electron density is given by (Eq. (16)):

ρAB(r) ≈ ρ∗A(rA) + ρ∗B(rB). (21)

By constraining the activation functions of nodes to take the form of ensemble atom-

centered sphericalized density distributions, the radial distance functions serve as a com-

pact, chemically-relevant basis for approximating molecular electron densities. Centering

these radial functions on the nuclear locations of atoms in the molecule creates a latent

representation that inherently reflects the spatial and electronic structure of the molecular

system, thereby constraining the network to generate outputs that are chemically reason-

able. Consequently, instead of learning arbitrary latent features through high-dimensional

layers trained on massive datasets, as is required in deep neural networks [53], the RBF-
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NN utilizes a pre-organized latent space where each dimension corresponds to an atomic

charge or excitation state, facilitating a direct and interpretable mapping from the molec-

ular geometry to the total molecular electron density. Thus, despite the RBF-NN being

remarkably simple in its architecture, a strong physical foundation is built into the design

of the NN.

2.3 Physical Constraints in the Loss Function

In order for the weights to be updated successfully during the process of backpropa-

gation, a loss function (or cost function) must be implemented in order to quantify how

well the neural network is performing. The loss function measures the difference between

the predicted output of the network and the known reference, or ‘true’, data [54]. During

training, an optimizer minimizes the loss by adjusting the weights in Eq. (20), so that the

predicted electron density more closely matches a given, true molecular electron density.

The optimizer is an algorithm that determines how the weights should be changed based

on the value of the loss, typically by following the gradient of the loss function with re-

spect to each weight [38, 39, 54, 55]. In this way, the loss function serves as the guiding

metric for learning, and the optimizer provides the mechanism for improving the network’s

predictions over successive training steps.

A traditional loss function determines the difference between a predicted output and

the known training data through the use of the mean squared error (MSE) or root mean

squared error (RMSE). The MSE, used in this work due to its smooth differentiability and

sensitivity to larger errors [54], is defined as:

MSE =
N∑
k=1

[ρtruek (r⃗) − ρpredk (r⃗)]2

N
, (22)

where, for each point in space k of the total N 3D gridpoints, ρtruek (r⃗) is the predicted
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atomic density distribution according to Eq. (20) and ρpredk (r⃗) is the given reference, or

training, density at that location. This ensures that the neural network learns to produce

electron densities that closely approximate the quantum mechanically-derived reference

densities, thus providing a direct measure of accuracy.

The loss function also provides an opportunity to enforce physical constraints on the

weights. These constraints ensure that the learned ensemble density is consistent with fun-

damental chemical and physical principles, rather than being an arbitrary mathematical

fit. The two key constraints applied in this work, in addition to those used in defining the

analytic form of the basis densities [4, 5], are charge conservation and normalization of en-

semble weights.

The charge constraint enforces the requirement that the total charge predicted by the

ensemble weights matches the total molecular charge, qtotal. Since each atomic state cor-

responds to a specific integer charge, the sum of all weighted charges over the atoms must

equal qtotal. In the present work, qtotal = 0 for all studied system as we only consider neu-

tral molecules. This constraint ensures that the electron density predicted by the network

corresponds to a chemically valid charged or neutral system. The constraint can be ex-

pressed as:

qtotal =

NA∑
i=1

Nens∑
j=0

wj
i q

j
i , (23)

where wj
i is the weight and qji is the integer charge associated with the jth state (neutral,

cation, anion) of the ith atom of the molecular system.

The normalization constraint ensures that, for each atom, the weights over all possi-

ble atomic charge states sum to one. This condition enforces the requirement that all the

pseudoatom partitions sum to the total molecular density at all points in space, Eq. (16),

and that the atom-in-molecule decomposition physically corresponds to a true, statistical,
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DFT ensemble [4, 18]. This condition is written as:

1 =

NA∑
i=1

Nens∑
j=0

wj
i , (24)

where the total sum of all weights wj
i , taken over all NA atoms and their Nens ensemble

states per atom, is constrained to be one.

Together, these constraints ensure that the neural network produces electron densi-

ties that are not only mathematically accurate but also chemically consistent. The charge

constraint prevents unphysical electron distributions that would correspond to the wrong

total charge, while the normalization constraint guarantees that the atomic states combine

in a way that reflects a valid DFT statistical ensemble description of the molecule [5, 18].

By embedding these physical requirements directly into the loss function, the RBF-NN is

guided to learn representations that honor both the numerical training data and the un-

derlying chemical theory theoretical DFT foundations.

2.4 Hydrogen and the Special Case of H+

Including hydrogen within the ensemble atom-in-molecule formulation is essential for

its application to realistic chemical systems. Considering that it is the most abundant el-

ement in the universe, hydrogen is a critical component of a vast range of molecules. In

particular, amino acids, the building blocks of proteins, contain hydrogen atoms that in-

teract with solvating H2O molecules. Moreover, hydrogen is significant in its capacity to

participate in a range of bonding environments, including covalent, ionic, and hydrogen

bonding interactions. The ability to model charge transfer and bonding interactions in-

volving hydrogen is therefore required in order to extend the ensemble AIM framework to

more complex and diverse systems.

The ensemble of ground and excited states for hydrogen are easily constructed because
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analytical forms of the hydrogen radial density distributions are well-known [56] and can

be implemented directly as activation functions within the RBF-NN framework. These

radial distributions are encoded through closed-form expressions corresponding to specific

quantum numbers (n, l). The hydrogen radial density functions take the form:

ρn,l(r) =
|Rn,l(r)|2

4π
, (25)

where Rn,l(r) is the hydrogenic radial wavefunction written as a product of a polynomial

and an exponential decay factor. These exact expressions [56] have been implemented here

for n = 1, 2, 3, 4 and corresponding l values. The radial electron densities are plotted in

Fig. 7. Because these radial densities are defined analytically, they can be used directly as

the radial activation functions in the RBF-NN model without the need for analytic fitting.

Figure 7: Radial density distributions for the ground and excited states of hydrogen,
Eq. (25). States are labeled by quantum numbers (n, l).

For charge states of hydrogen, a different methodology is required. For the hydrogen
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anion, H−, the standard analytic fit of the sphericalized, radial density can be performed

according to the model in Eq. (19). However, the hydrogen cation state, H+, presents a

glaring issue. Because H+ lacks any electrons — it is just a proton — there is no electron

density distribution to analytically fit.

Previous work in this project [4] attempted multiple strategies to represent H+ within

the ensemble representation, including using a negative ground state density distribution

and as difference in density distributions, ρH+ = ρH+
2
− ρH0 . These proved unsuccessful.

Fortunately, the use of an RBF-NN formulation provides an alternative and natural

way to include a H+ state into the hydrogen ensemble. Although a density distribution

cannot be directly added into the RBF ensemble for H+, its contribution can still be effec-

tively incorporated through the loss function. In particular, the ensemble weights, which

determine the linear combination of basis functions, are involved in satisfying the charge

and normalization constraints imposed on the system, Eqs. (23) and (24). Since H+ con-

tains no electrons, its density is effectively represented as a zero distribution within the en-

semble. However, the weight corresponding to H+ remains a tunable parameter that par-

ticipates in the optimization process via the constrained loss. This means that while H+

has no explicit radial density to serve as an RBF activation function, its influence is em-

bedded within the global ensemble properties that must satisfy physical constraints such

as total number of electrons and charge neutrality. Thus, H+ is implicitly included in the

model by enforcing that its absence of electron density is consistent with the overall charge

and normalization conditions imposed on the overall system.
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3 Computational Implementation of the RBF-NN

3.1 Design of the RBF-NN

The structural design of the RBF-NN, as applied to a simple diatomic molecule such

as LiF, is illustrated in Fig. 8. This depicts six RBF neurons/nodes that correspond to the

charge states of the atoms that make up the molecule. Thus, for each atom, there exists

nodes corresponding to the cation, anion and neutral states. Although not depicted in this

example, additional states including those of higher charge or excited states can be easily

added into this formulation as additional nodes. In the case of the representation of LiF in

Fig. 8, rather than having just six nodes representing the charge states of each atom, more

nodes can be added corresponding to either ions in higher charge states (i.e. Li+2,F−2) or

excited states of the neutral atom or ion.

Figure 8: Structure of the RBF-NN for LiF as an exemplar.

Each of the nodes has an activation function of the form of Eq. (19). Each of these
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nodes also has an associated weight, ωij, that can be adjusted during the optimization pro-

cess of the neural network’s learning into order to determine the optimal superposition of

radial basis function state densities (Eq. (20)).

The RBF-NN takes as input a set of spatial coordinates on a 3D grid. The 3D coordi-

nates, which are in the form of Cartesian coordinates on a uniform grid, are converted to

radial distances from the nuclear locations for each atom. For an atom A located at the

Cartesian location (xA, yA, zA), the radial distance an arbitrary point (x, y, z) is away from

the nucleus is:

rA =
√

(x− xA)2 + (y − yA)2 + (z − zA)2, (26)

and analogously for atom B.

The radial distances can be fed into the radial activation functions centered at each

node in order to find each atomic state’s contribution to the density distribution. These

radial functions are then summed with their corresponding weights to output the predicted

electron density distribution for the entire molecule, ρpred(r⃗), equivalent to finding ρ̃(⃗r) in

Eq. (16).

The input spatial coordinates are also associated with a quantum mechanically-generated

electron density distribution. This ‘true’ electron density distribution for the molecule,

ρtrue(r⃗), is used to evaluate the accuracy of the predicted distribution through the loss

function. As described above, this evaluation works to calibrate the weights that deter-

mine ρpred(r⃗). Through successive iterations in which the weights are updated to minimize

the loss between the true and predicted electron density distributions, Eq. (22), the opti-

mal ensemble AIM is determined for the molecule. Thus, this training of the RBF-NN is

used to determine the weights allocating the superposition of atomic states of the molecule

as well as to determine the predicted electron density distribution.
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3.2 Computational Methods and Tools

The RBF-NN was coded in Python using the TensorFlow software library [57] with

custom Keras layers enabled [58], included in Appendix A. TensorFlow is an open-source

machine learning framework developed by Google. Keras, integrated within TensorFlow,

is a high-level neural network application programming interface (API) that simplifies the

process of building and training machine learning models. It offers an interface for defining

a neural network’s architecture, while maintaining compatibility with TensorFlow’s opti-

mization algorithms and other capabilities. The use of Keras allowed for a more straight-

forward implementation of the RBF-NN, as the custom activation functions that compute

the radial basis function response can be implemented using Keras’ Layer class.

The weights ωij that define the ensemble atom-in-molecule superposition were opti-

mized using the ADAM optimizer [59]. ADAM (Adaptive Moment Estimation) is a stochastic

optimization algorithm that combines the benefits of both the Adaptive Gradient Algo-

rithm (AdaGrad) [60] and Root Mean Square Propagation (RMSProp) [55]. It utilizes

first-moment (mean) and second-moment (uncentered variance) estimates of the gradi-

ents to adaptively adjust the learning rate for each weight [61]. This optimizer was imple-

mented through its packaging in the TensorFlow library.

The RBF-NN is trained with quantum mechanical computed molecular densities on a

grid. These were generated using the Gaussian’16 software package [62]. Gaussian’16 is

a computational chemistry software package used for electronic structure (quantum chemi-

cal) calculations. It supports various levels of theory, including Hartree-Fock (HF), density

functional theory, and post-Hartree-Fock correlation techniques such as MP2 and MP4.

The training data utilized in the present work consists of molecular densities generated on

a uniform Cartesian grid and computed at the MP4 level of theory.

Of note, the sphericalization of the atomic densities to construct the radial distribution

functions and perform the analytic fits to define the RBF-NN activation functions were
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done with a custom Matlab script, as described in [4], and translated to Python for use in

the present work.

3.3 Training the RBF-NN

The RBF-NN is trained with quantum-mechanically computed molecular densities on

a grid generated using the Gaussian’16 electronic structure code. Over many iterations, it

uses this training data to determine the optimal weights for each state in the AIM super-

position. The training process follows the general cycle illustrated in Fig. 9.

Figure 9: Training process of the RBF-NN per epoch. After initializing the weights, train-
ing follows the cycle of applying the radial basis functions to construct a predicted elec-
tron density. This predicted density is then evaluated through the loss function, and the
ADAM optimizer updates the weights accordingly.
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After the weights are initialized, the radial basis functions in the neural network are

applied on the training grid to give the predicted molecular electron density distribution.

To improve computational efficiency and stabilize optimization, the grid points are divided

into smaller groups called batches, with each batch containing a subset of the total data

points. The result for each batch is compared to the corresponding true density values to

compute the loss, which is then fed into the ADAM optimizer [59]. The optimizer updates

the weights, and the cycle continues. Each full pass over the entire training set, consist-

ing of all batches, is referred to as an epoch. Multiple epochs are typically required for the

model to converge.

As discussed previously (Section 2.2), the network’s radial basis functions serve as a

compact representation of atomic electron densities, reducing the complexity of the train-

ing process. The predicted electron density distribution can be determined by applying

the radial basis functions with the current weights as (Eqs. (20) and (21)). The loss func-

tion described in Section 2.3 is used to evaluate the success of this prediction through both

comparison to the actual density distribution and its obedience to the physical constraints

(charge conservation and weight normalization).

The ADAM optimizer takes the loss as input, and uses it to inform an adjustment of the

weights. This process continues until the model converges to an optimized representation

of the molecular electron density. The resulting weight distributions provide insight into

the contributions of individual atomic charge states, enabling a physically-informed AIM

decomposition.

It is important to clarify that the RBF-NN is not performing classification in the con-

ventional machine learning sense. Instead, the RBF-NN is used here purely for optimiza-

tion. The objective is to minimize the mean-squared error (MSE) between the predicted

electron density and the reference (input) quantum-mechanical density. Training pro-

ceeds until the loss fails to improve, which serves as the stopping criterion (this will be

described in detail in Section 3.3.4). Once this criterion is met, the optimization halts
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and the weights determining the superposition are no longer adjusted. At that point, the

model is considered “trained,” and the final superposition of the radial basis functions

determined by the converged weights constitutes the “prediction.” This prediction is not

speculative; it is a direct output of the optimized physical model, yielding both the ensem-

ble density and the effective atomic charges determined by the learned weights.

Although the RBF-NN is trained on electron densities computed by Gaussian’16, its

outputs do not simply reproduce those densities. The ensemble representation provided

by the RBF-NN offers a compact and chemically interpretable description of the system.

From this representation, we can extract changes in effective atomic charges as a function

of internuclear separation, track the onset of ionic bonding character, and recover neu-

tral atom limits at large internuclear separations. These features are not directly avail-

able from the input Gaussian’16 data. The value of the model lies in how it reorganizes

that information: instead of a grid of density values, we obtain a structured decomposi-

tion in terms of physically meaningful atomic components. This enables both visualization

and analysis of bonding character in a manner that extends beyond the original electronic

structure calculations.

3.3.1 Loss Function Design

The loss function is implemented using Keras’ custom loss functionality, ensuring that

both the accuracy of the predicted molecular density and physical constraints are incorpo-

rated into the training process. The loss function is computed dynamically for each train-

ing batch and is passed to the ADAM optimizer, which updates the network’s weights ac-
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cordingly. For a simple diatomic molecule, AB, the loss function is structured as follows:

Loss = Ω1 ·
N∑
k=1

[ρtruek (r⃗) − ρpredk (r⃗)]2

N

+ Ω2 ·
∣∣(wA

0 · 0) + (wA
1 · 1) + (wA

2 · −1) + (wB
0 · 0) + (wB

1 · 1) + (wB
2 · −1)

∣∣
+ Ω3 ·

∣∣wA
0 + wA

1 + wA
2 − 1

∣∣
+ Ω4 ·

∣∣wB
0 + wB

1 + wB
2 − 1

∣∣ . (27)

This loss function is informed by the true and predicted electron density distributions,

ρtruek (r⃗) and ρpredk (r⃗), as well as the weights associated with each state.

In Keras, the loss function is defined as a custom function that takes the predicted and

true electron densities as inputs and returns a scalar loss value. The first term in Eq. (27)

represents the mean squared error (MSE), which ensures the predicted electron density

aligns with the reference data (Eq. (22)). The remaining terms implement weighted penal-

ties for deviations from charge neutrality and normalization constraints, as seen in Eqs. (23)

and (24). These terms are scaled by adjustable hyperparameters, denoted by Ω1,Ω2,Ω3,

and Ω4, which determine the relative importance of each constraint during optimization.

The weighting factors Ωi allow for flexibility in training, as they can be fine-tuned to

balance numerical accuracy with physical consistency. For instance, if charge neutrality

deviates significantly during training, increasing Ω2 reinforces this constraint, ensuring the

model prioritizes charge conservation. Similarly, Ω3 and Ω4 control the strength of weight

normalization constraints, preventing the network from assigning unphysical weight distri-

butions. These parameters are adjusted manually by the user, if the RBF-NN is observed

as not prioritizing a constraint or quality of fit.
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3.3.2 Implementing the ADAM Optimizer

As noted above, the ADAM optimizer [59] is used to minimize the loss function during

the training of the RBF-NN by adaptively adjusting the weights. The optimizer combines

the advantages of two other popular optimization algorithms: Adaptive Gradient Algo-

rithm (AdaGrad) and Root Mean Square Propagation (RMSProp). It leverages both first

and second moment estimates to adapt the learning rate of each parameter [61].

One of the most important hyperparameters in the ADAM optimizer is the learning rate.

The learning rate determines the step size at which the model’s weights are updated dur-

ing training. While ADAM adaptively adjusts the learning rate for each parameter based on

the moving averages of past gradients, the base learning rate still plays a crucial role in

scaling these updates. If the learning rate is set too high, the optimizer may overshoot the

optimal point, leading to oscillations or divergence in the loss function. Conversely, if the

learning rate is too low, convergence will be slow, and the model may get stuck in local

minima. Selecting an appropriate learning rate is crucial for efficient and accurate train-

ing.

The optimizer also employs a technique called weight decay. Weight decay is a regu-

larization technique used to prevent overfitting by penalizing large weights during training

[38]. The fundamental idea is to add a penalty term to the loss function that is propor-

tional to the squared magnitude of the weights. The weight decay term helps maintain

generalization performance, especially when the network is prone to overfitting [63, 64].

An additional feature of the ADAM optimizer that can be enabled is amsgrad. Setting

amsgrad = True modifies the optimizer to use the AMSGrad variant of ADAM, which is de-

signed to improve convergence stability. AMSGrad addresses a known issue with the stan-

dard ADAM optimizer where the learning rate can become excessively small due to exponen-

tially decaying average gradients. By maintaining a long-term maximum of past squared

gradients, AMSGrad ensures that the adaptive learning rate does not decrease too rapidly.
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This has been shown to result in more stable and reliable convergence [65].

3.3.3 Batching in RBF-NN Training

Batching refers to the process of splitting the training dataset into smaller subsets and

training the model on these smaller sets rather than the entire dataset at once. Instead of

updating the network’s weights after every individual data point or waiting to process all

data points in a single pass, batching allows for more efficient use of memory and compu-

tational resources. The training process works by applying the model to each batch, calcu-

lating the loss, and updating the weights before moving to the next batch. This process is

repeated for several epochs until the model converges to an optimized solution [38].

In the context of the RBF-NN, rather than using the entire grid of molecular density

data at once, the data is randomly divided into smaller batches. Each batch consists of a

subset of grid points where the network applies the radial basis functions and computes

the predicted molecular density. The loss is then computed for that batch by comparing

the predicted density with the actual density. The optimizer (in this case, ADAM) uses this

loss to adjust the network’s weights. This cycle repeats for each batch until all batches

have been processed for one epoch.

Using batches has several advantages in the training process. It allows for faster and

more memory-efficient computations, especially when working with large datasets, like the

3D density grids used in this work [55]. Batching also introduces some stochasticity into

the training. Instead of learning from the entire dataset at once, the network updates its

weights based on the smaller batches, which helps prevent overfitting and improves gener-

alization [38].

In the training code, batching is implemented using the batch size parameter in the

model.fit() function in TensorFlow [57]. The batch size determines how many data points

are processed together before the weights are updated.
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The batch size can be adjusted as needed. Smaller batch sizes typically lead to more

frequent updates in the weights and can help escape local minima in the loss, but can in-

troduce more noise into the training process [38]. Larger batch sizes are more computa-

tionally efficient and result in smoother convergence but can be prone to overfitting if too

large.

Figure 10: Loss as a function of epoch for an RBF-NN run of hydrogen fluoride at in-
ternuclear separation 1.75 Å, tracked with early stopping routine in order to determine
convergence.

3.3.4 Early Stopping Routine

The implementation of the RBF-NN also includes an early stopping routine, which

works to identify when the neural network has properly found a solution and therefore

end the training. It acts as a form of regularization [38], preventing overfitting in the fi-

nal result. The early stopping routine used in the RBF-NN functions by monitoring the

loss over all epochs. If the loss does not decrease beyond a specific tolerance over a spec-
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ified patience, or a set range of epochs, the training is ended with the best weights (with

smallest loss). For instance, if the patience parameter was set to 50 epochs, then if the loss

does not decrease by a significant amount over the 50 epochs, the training is ended.

As seen in Fig. 10, as the RBF-NN trains the loss decreases and converges to a min-

imum. Some oscillations in the loss occur as the weights are altered using the ADAM opti-

mizer; however, the loss still decays steadily as a function of epoch. Although the max-

imum number of epochs for this run was set to 1500 epochs, the early stopping routine

acted just after 500 epochs, stopping training as convergence was found to have occurred.

3.4 Training as a Function of Internuclear Separation

In order to study how the ensemble AIM formulation is able to represent charge trans-

fer, it is relevant to conduct the AIM partitioning as a function of molecular geometry.

For diatomics, this is accomplished by varying the internuclear separation, R (see Fig. 11),

bringing the two atoms together or pulling them apart.

Figure 11: Geometry of a heteronuclear diatomic molecule, as a function of internuclear
separation R.

Thus, for a range of selected values of R, the RBF-NN can be applied with training

molecular density data calculated at a given internuclear separation in order to determine

the weights for that molecular geometry. The weights can be tracked as the value of R

changes, to measure how the AIM formulation changes as a function of molecular geome-

try.
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At each R value, the effective atomic charge per atom i, qi, can be calculated accord-

ing to:

qi =
∑
j=0

wj
i q

j
i , (28)

where the qji are the effective charges of each individual state of the atom with their cor-

responding weights, wj
i . Thus, the effective charges on each atom can be compared as a

function of R in order to evaluate how charge transfer occurs as atoms in the molecule are

brought together or pulled apart.

The initialization of weights at the start of RBF-NN training requires careful consid-

eration. The many adjustable weights of the system represent a high-dimensional space in

which the function approximation occurs. Initializing the weights places the beginning of

the learning at some location in this space. Nonphysical initializations may lead to non-

physical optimized weights, even after training. Thus, the initial weights must be chosen

carefully. At large internuclear separations, the atoms in the molecule are effectively iso-

lated, with the neutral atomic state dominating the charge distribution. Initializing the

weights with neutral states at these large separations ensures a physically consistent start-

ing point.

To maintain continuity in the training process, the optimized weights from one value

of R are used as the initial weights for the subsequent, closer internuclear separations.

This approach of utilizing the final optimized weights from one configuration to initialize

the next ensures that the training remains consistent and physically meaningful through-

out the entire range of R. As the atoms are brought together, these continuous weights are

recorded in order to capture the process of charge transfer.
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4 Application to Various Molecular Systems

4.1 LiF

LiF was selected to be the first molecule studied using the novel RBF-NN architecture

due to its status as a simple heteronuclear diatomic dominated by ionic interactions: in a

näıve picture of the chemical bond, Li donates an electron to F, so that both atoms “look

like” closed-shell atoms (He and Ne, respectively), with nominal charges Li+1F−1. This

molecule was also previously studied by Amo-Kwao [4], using a very different nested-grid

optimization procedure that – for numerical reasons – could be only extended out to R =

2.2 Å = 4.16 a.u., well within the ionic region. Thus, this previous work was limited in

its ability to show the dissociation to neutrals as the atoms are pulled far apart, which

occurs at R ≈ 13 a.u. [66]. The RBF-NN successfully reproduces these previous results

and extends them to internuclear separations where dissociation to isolated atoms can be

observed.

As described in Section 3.4, we can train the RBF-NN as a function of the internuclear

separation, R. At each value of R, the predicted electron density can be found with the

superposition of states using the optimized weights. This predicted electron density dis-

tribution can be compared to the actual electron density distribution, calculated for each

value of R using the Gaussian’16 electronic structure code at the MP4 level of theory.

The electron density distributions can be visualized using contour plots of the natu-

ral log of the density, ln(ρ(r⃗)), over a yz-plane (x = 0) slice of the 3D grid including both

atomic nuclei. The contour plots for the ‘true’, Gaussian’16 generated, electron density

distributions and the RBF-NN predicted electron density distributions are shown in Fig-

ures 12 and 13 respectively.

Using the RBF-NN, we are able to successfully capture LiF’s neutral-to-ionic transi-

tion as a function of R, as shown in Fig. 14. To monitor the transition, we compute the
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Figure 12: Contour plot of natural log of the true, QM-calculated density of LiF, ln(ρ(r⃗))
at various values of internuclear separations, R, shown within the yz-plane. Density com-
puted at MP4 level of theory using Gaussian’16 [62].

Figure 13: Contour plot of natural log of RBF-NN predicted density of LiF, ln(ρpred(r⃗))
shown within the yz-plane at various values of internuclear separations, R (same values as
Fig. 12).
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effective charge on each atom as a function of R using Eq. (28). At large separations the

atoms are neutral, but as they are brought together the atoms acquire charges close to

one. We are also able to quantify the distance at which the transition occurs, as the first

point before the increase in charge occurs in the distribution.

Figure 14: Effective charge of LiF as a function of internuclear separation R based on the
ensemble AIM representation of the reference molecular density ρtrue(r⃗) computed at the
MP4 level of theory.

We observe that the atoms gain effective charges of approximately ±0.9 when the

ionic bond is formed. This can be compared to the effective charge computed by Bader

for LiF, utilizing his topological AIM approach. For LiF, Bader computed an effective

atomic charge for Li of 0.938 (equal and opposite for F), at the LiF equilibrium separa-

tion of 1.564 Å (2.955 a.u.) [27]. This is indicated as the yellow diamond in Fig. 15. This

plot also includes previous work by Amo-Kwao [4] which represented LiF using the ensem-

ble AIM formulation, but with the nested-grid approach as previously described (red curve

in Fig. 15). Amo-Kwao’s computed Bader atomic charges as a function of internuclear sep-

aration are also shown (black curve).

The magnitudes of charges computed in the present work agree well with both Bader
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Figure 15: Charge transfer, q(Li), as a function of internuclear separation R in the bond-
ing region of LiF. Data from work done in [4] (red) was determined using the same ensem-
ble AIM formulation as the present work, but utilized nested grids and a standard BFGS
method to determine the optimal ensemble weights. Effective charges computed using
Bader’s AIMll code is also shown (black). Figure from [4].

and Amo-Kwao. All three methods find that bonded Li and F have effective charges of

∼ ±0.9 in the ionic bonding range.

As can be seen in Fig. 14, initial results using the MP4-computed molecular densities

locate the transition from neutral to ionic at ∼ 7.5 a.u.; however, highly accurate quantum

chemical calculations [66] place it further out, at ∼ 13 a.u. This discrepancy is explored in

the next section.

4.1.1 Comparison with SWE Results of Varandas

In a 2009 study by Varandas [66], the ground and excited state potential energy curves

and charge transfer behavior of LiF were computed using a series of high-level quantum
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chemical methods. The work focused on accurately capturing the transition between neu-

tral and ionic character as a function of internuclear separation. This transition is de-

scribed as the coupling between the ground and first excited electronic states of the molecule.

Varandas’ calculations clearly demonstrate the transition between ionic and neutral char-

acter by monitoring the computed dipole moment of the molecule as the constituent atoms

are brought together or pulled apart (Fig. 16). The dipole moment as a function of the in-

ternuclear distance exhibits a sharp transition at approximately 13 a.u., indicating that a

neutral-to-ionic transition occurs for LiF at this separation. These results therefore serve

as a useful reference for validating the performance of the RBF-NN.

Figure 16: Dipole moment as a function of interatomic distance for the ground and first
excited state of LiF, computed at different levels of quantum chemical theory. From [66].

In order to compare with Varandas’ results for the dipole moment as a function of in-

ternuclear separation R, calculations using Gaussian’16 were performed at different levels

of theory and plotted in Fig. 17. Notably, the MP4 level of theory used in generating the

training molecular electron density for the RBF-NN, fails to capture the neutral-to-ionic
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transition via the dipole moment as Varandas’ data does.

Nevertheless, the RBF-NN atom-in-molecule representation yields a effective charge

distribution as a function of R that clearly indicates a neutral-to-ionic transition, as seen

in Fig. 14. This implies that the MP4-generated electron density distribution used to train

the RBF-NN still contains underlying bonding information of atoms in the molecule de-

spite the lack of indication in the MP4-computed dipole moment.

Figure 17: Dipole moment as a function of interatomic distance for various levels theory of
LiF, calculated using Gaussian’16. Also includes the Varandas [66] dipole moment from
Fig. 16.

Although the RBF-NN is able to capture the bonding transition using the MP4 train-

ing data, it still needs to be understood why the transition occurs at the wrong location.

At this point in the work, it was observed that Varandas had implemented two levels of

theory in his the electronic structure calculations: MRCI (Multi-Reference Configuration

Interaction) and CAS (Complete Active Space Self-Consistent Field), the results of which

are both displayed in Fig. 16. MRCI captures both static and dynamic electron correla-

tion, which is critical for accurately modeling bond breaking and charge transfer, while

CAS captures only static correlation. As seen in the figure, the dipole moment generated
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at the less exact level of theory, CAS, indicates a bonding transition at a shorter internu-

clear separation (∼ 10 a.u.) than MRCI (∼ 13 a.u.).

The difference between the two levels of quantum chemical theory in Varandas’ work

suggested that we explore the effect of level of theory on the computed neutral-to-ionic

transition using the RBF-NN. This is discussed in the following section.

4.1.2 LiF RBF-NN Analysis at Various Levels of Theory

In order to investigate the possibility that the level of theory of the training data can

impact the transition location, we explored how the RBF-NN predicts the bonding behav-

ior of LiF starting from reference molecular densities computed at various levels of the-

ory. The levels of theory selected for the training data include MP4 [3], PBE0 [15], B3LYP

[13, 14], and wB97XD [16, 17]. These were chosen to represent a range of treatments of

exchange and correlation.

MP4 (Møller–Plesset perturbation theory to 4th order) [3] is a post-Hartree-Fock method

that combines exact exchange from Hartree-Fock with a perturbative correction to account

for electron correlation. This is the only explicitly wavefunction-based method used in this

work.

PBE0 [15] is a hybrid exchange-correlation energy density functional Exc[ρ] that mixes

a small percentage of exact Hartree-Fock exchange with exchange and correlation from the

Perdew-Burke-Ernzerhof (PBE) density functional [67]. PBE itself is a generalized gra-

dient approximation functional, in which Exc[ρ] is expressed in terms of the local density

and gradients of the density [67]. PBE0 is known for its robustness in solid-state systems

and has become widely used due to its improved balance between accuracy and computa-

tional efficiency.

B3LYP [13] is another hybrid DFT functional that includes empirical parameters.

It combines Slater exchange and Becke’s gradient correction [14] with correlation con-
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tributions derived from the Colle-Salvetti model of the helium atom [13, 68]. B3LYP in-

cludes three empirically optimized parameters and is among the most popular functionals

in quantum chemistry, particularly for small molecular systems, having been shown to out-

perform MP2 in both efficiency and accuracy [69].

ωB97XD [16, 17] is a long-range-corrected hybrid functional that partitions the exchange-

correlation energy into short and long range components. It uses Becke’s 1997 exchange

functional [70] for short-range exchange, exact Hartree-Fock for long-range exchange, and

includes a damped empirical dispersion correction applied post-calculation. This correc-

tion is designed to handle non-covalent interactions and long-range charge transfer more

accurately. Of all the levels of theory included, ωB97XD is the functional most designed to

model charge transfer.

All four of the selected levels of theory described above were used to generate train-

ing data for the RBF-NN representation of LiF as a function of internuclear separation R

(see Fig. 17). The RBF-NN was then used to determine the weights defining the ensemble

AIM superposition, which then could be used to track the effective charge as a function of

R. The plots included in Fig. 18 display the effective charge as a function of R for all four

levels of theory. The location of the bonding transition, Rt, was determined, as described

above, as the value of R at which the sudden change in atom-in-molecule computed effec-

tive charges began to increase from zero, to a finite value.

As can be seen in Fig. 18, changes in the level of theory used for the training data

cause a clear shift in the location of the bonding transition location. Moreover, ωB97XD,

the level of theory specifically designed to provide an improved description of charge trans-

fer in DFT, displays a bonding transition location (10.016 a.u.) closest to the Varandas’

wavefunction based value of ∼ 13 a.u.
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Figure 18: Effective charges of LiF as a function of internuclear separation R at the four
levels of theory described in the main text: MP4, PBE0, B3LYP, and ωB97XD.

4.2 HF

Hydrogen fluoride was selected as an additional molecule for study by the RBF-NN

in order to test the implementation of the hydrogen cation state within the AIM ensem-

ble representation, as discussed in Section 2.4. The use of a molecule including hydrogen

also provides the ability to include excited states within the ensemble representation, since

their electron density distributions are known analytically.

For the purpose of analyzing the effects of including excited states of hydrogen in the

RBF-NN model, the first five excited states of H, with principal quantum numbers n = 2

and n = 3, were successively included in the ensemble. These states, as well as the ground
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state of hydrogen, are plotted in Fig. 19. Adding excited states in this ’ladder’ of states

procedure [4], enables us to assess how the RBF-NN responds to new states in a controlled

manner.

As more states are included in the RBF-NN representation, weight given to the hydro-

gen cation state can be analyzed in order to determine the impact of its implementation

within the RBF-NN.

Figure 19: Radial density distributions for the ground and first five excited states of hy-
drogen. States are labeled by quantum numbers (n, l).

4.2.1 Ladder Implementation of Hydrogen Excited States

To assess how excited states of hydrogen contribute to the RBF-NN representation,

each excited state was added one by one to the ensemble model of HF. The corresponding

weight profiles were analyzed as a function of internuclear separation R, as the two atoms,

H and F, are brought together. This procedure allows for direct observation of how each
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added state affects the overall representation, and whether their presence interferes with or

supports the identification of charge transfer through the hydrogen cation weight.

Figure 20: Weights for HF as a function of internuclear separation. States included are flu-
orine cation (brown), neutral (purple), anion (pink) and hydrogen cation (orange), neutral
(blue), anion (green), and the first excited state, (n = 2, l = 0) (red).

Fig. 20 displays results from including only the first excited state (n = 2, l = 0). The

weight associated with this state (red) causes a dip in the hydrogen neutral weight (blue),

particularly at intermediate separations. This excited state peaks at larger R values and

then falls off as the hydrogen cation (orange) weight begins to grow near the equilibrium

separation, (∼ 1.7 a.u.) [27]. Notably, the fluorine ion weights (F+ and F−) are indis-

tinguishable until this transition, suggesting that their separation becomes relevant only

when charge transfer is initiated.

Fig. 21 shows the effect of adding the second excited state of H (n = 2, l = 1) alongside

the first. This addition leads to a more pronounced dip in the neutral hydrogen weight

and the formation of a “band” structure in the fluorine weights, where F+, F0, and F− all

carry approximately equal weight. Again, the fluorine cation and anion weights remain
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Figure 21: Weights for HF as a function of internuclear separation. States included are
fluorine cation (light blue), neutral (light green), anion (dark blue) and hydrogen cation
(orange), neutral (blue), anion (green), and the first two excited states, (n = 2, l = 0) (red)
and (n = 2, l = 1) (purple).

overlapped until the hydrogen cation gains weight at smaller internuclear separations.

In Fig. 22, the third excited state (n = 3, l = 0) is added. This state dominates over

the lower excited states and effectively “steals” weight from them. Interestingly, the lower

excited states peak at the farthest separations, followed by the higher excited state, after

which all excited weights fall and the hydrogen cation gains weight – clearly illustrating

the emergence of ionic character at smaller interatomic distances.

Fig. 23 shows the inclusion of the fourth excited state (n = 3, l = 1). This state and

the previous one share dominance, and now weight is taken not from just the hydrogen

neutral state but among the lower excited states. The redistribution of weight indicates

that new excited states can compete more directly with previously added states rather

than just pulling from the ground state.

Finally, Fig. 24 introduces the fifth excited state (n = 3, l = 2). This state shows
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Figure 22: Weights for HF as a function of internuclear separation. States included are
fluorine cation (light blue), neutral (light green), anion (dark blue) and hydrogen cation
(orange), neutral (blue), anion (green), and the first three excited states, (n = 2, l = 0)
(red), (n = 2, l = 1) (purple), and (n = 3, l = 0) (brown).

nearly identical behavior to the fourth, with the weight curves falling directly on top of

one another, suggesting redundancy in the information each state contributes to the en-

semble. This redundancy implies a saturation point in the excited-state basis for hydrogen

within the model. Despite these additions, the fluorine weight band structure remains con-

sistent, and the F+ and F− weights continue to overlap until hydrogen’s cation state gains

weight at ∼ 1.7 a.u.

Note that with each additional excited state added, the RBF-NN will supply weight to

it. Excited states associated with the same H principal quantum number n tend to fall di-

rectly on top of each other. This seems reasonable since, in H, states with the same values

of n are associated with the same energy.

The internuclear separation R at which the excited state weights are given the most

weight is also of interest. As the two atoms of HF are brought together, the excited states
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Figure 23: Weights for HF as a function of internuclear separation. States included
are fluorine cation (light blue), neutral (light green), anion (dark blue) states and hy-
drogen cation (orange), neutral (blue), anion (green), and the hydrogen excited states:
(n = 2, l = 0) (red), (n = 2, l = 1) (purple), (n = 3, l = 0) (brown), and (n = 3, l = 1)
(pink).

are initially given weight, but closer to the known equilibrium bond distance (1.7328 a.u.

[27]), the excited state weights fall and the hydrogen cation is given increased weight. This

makes sense as well as one would expect that the single electron of hydrogen would be-

come increasingly excited as the atom is brought closer to the demanding fluorine until it

is pulled away from the hydrogen entirely, converting the hydrogen into a cation state.

Some elements of the observed weight vs. separation distributions are of concern. For

instance, the fluorine ‘band’ consisting of all three charge states of fluorine having the

same weight is hard to explain, but is likely due to fluorine’s lack of ensemble states in

comparison with hydrogen: In the present calculations, fluorine represented only by its

three charge states: F0, F+1, and F−1. No excited states of fluorine were included in the

superposition. This imbalance could explain the fluorine band, as weight that would opti-

mally put in a fluorine excited state had to instead be distributed among the charge state
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Figure 24: Weights for HF as a function of internuclear separation. States included are
fluorine cation (light blue), neutral (light green), anion (dark blue) and hydrogen cation
(orange), neutral (blue), anion (green), and all n = 2 and n = 3 hydrogen excited states.

weights.

4.2.2 Evaluation of the H+ State Implementation

In order to evaluate the success of the RBF-NN hydrogen cation implementation for

the AIM ensemble formulation, as detailed in Section 2.4, the effective charges of hydrogen

and fluorine as a function of internuclear separation R were computed using Eq. (28). The

results are plotted in Fig. 25.

As can be seen in the figure, at large internuclear separations the effective charges of

both atoms are zero, and the atoms are neutral. This is as expected for two well-separated

atoms. As the atoms are brought together, their effective charges increases due to charge

transfer. Hydrogen gains a positive effective charge as fluorine gains a compensating neg-

ative charge. This is consistent with what would be expected in a HF bond, in which hy-
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Figure 25: Effective charge of atoms of HF: hydrogen (blue) and fluorine (orange), as a
function of internuclear separation. The total charge (green) is also included, constrained
to be neutral by the RBF-NN loss function.

drogen acts as the cation (electron donor) and fluorine the anion (electron acceptor). No-

tably, the atoms of HF gain charge at ∼ 1.7 a.u., the equilibrium distance of HF. This

shows that the implemented hydrogen cation state acts consistently with what is expected

chemically.

It must be noted that the effective charge given to the atoms of HF is quite small,

with charges of approximately 0.2 in magnitude. Unlike the case of LiF reported above

and in [4], this value disagrees with the results of Bader’s topological formulation, which

gives an expected charge of 0.761 at the HF equilibrium separation of 1.7328 a.u. [27].

Thus, the effective charges of HF, although exhibiting the expected trend as a function

of R, are smaller in magnitude than expected.

A likely culprit for the lower than expected charges is the lack of excited charge states

of fluorine in the ensemble atom-in-molecule representation, in contrast to hydrogen, for
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which up to five excited states were included. This was due to the fact that exact radial

functions for excited states of hydrogen are known exactly, while for other larger elements,

like fluorine, a 3D quantum mechanically generated electron density distribution for the

isolated, excited states for fluorine would need to be generated. This calculated distribu-

tion could then be sphericalized and fit to the analytical functions detailed in Eq. (19) as

was done for the radial basis functions for other the charge states. The generation of ex-

cited state density distributions for many-electron atoms is more involved than the straight-

forward computations of ground state neutral and ionic densities, and is presently under-

way [71]. Preliminary results for the first three excited states of Li0 are shown in Fig. 26.

Figure 26: Radial distribution functions of the first three isolated excited states of Li [71].

The lack of fluorine excited states could have significant impact on the effectiveness of

the hydrogen cation state. As noted earlier, the hydrogen cation state is informed only by

the loss function: it has no density distribution to be included in the ensemble of states,

but its weight is included in the loss function physical constraints. Thus, the hydrogen

cation state responds to any increase in weight assigned to the fluorine anion state in or-

der to meet the physical constraint that the total molecular charge is kept neutral. As
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observed in Fig. 24, the fluorine states are distinguished from each other; instead, their

weights form a single band of equal weight. This may be due to a failure of the RBF-NN

formulation to be ‘strong’ enough to represent the fluorine capture of hydrogen’s single

electron without inclusion of fluorine excited states. Adding these states may resolve this

issue and lead to a more complete and physical hydrogen cation representation. Inclusion

of such excited states will inspire further work in this project, enabling the exploration of

how excited states affect charge transfer as a function of internuclear separation for HF,

LiF, and other more complex molecules.

5 Spherical DFT and Relation to an AIM formulation

The work described in this section is a summary of a separate ms. to be submitted for

publication [72].

Spherical density functional theory (DFT) [73] is a reformulation of the classic the-

orems of DFT, in which the role of the total density of a many-electron system, ρ(r), is

replaced by a set of sphericalized densities, {ρ̄i(ri;Ri)}, each centered at a nuclear position

Ri. This formulation was introduced by Theophilou [73] and subsequently extended by

Nagy [74] to encompass constrained-search DFT approaches [75]. In spherical DFT, each

ρ̄i is obtained by averaging the total electron density over angular coordinates about the

ith nucleus:

ρ̄i(ri;Ri) ≡
∫

ρ(ri) dΩi, (29)

where ri = r − Ri, ri is the radial distance from atom i, and Ωi is the angular component

of the differential volume in spherical polar coordinates centered about atom i.

In both Theophilou’s and Nagy’s original arguments, the nuclear positions {Ri} are

treated as known inputs: Theophilou assumes them explicitly in defining local potentials

vi(ri;Ri), while Nagy assumes them in order to apply Kato’s theorem [76, 77] to extract

nuclear charges from known nuclear cusp locations in the density. Kato’s cusp condition
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provides a differential relationship between the radial derivative of the electron density at

a nucleus and the nuclear charge. The condition,

Zi = − 1

2ρi(r = Ri)

∂ρi(r)

∂r

∣∣∣∣
r=Ri

, (30)

implies that the electron density of an atom i decays exponentially very close to its nu-

cleus, with rate of decay proportional to the nuclear charge. This allows the extraction of

the nuclear charge, Zi, from observed density behavior at known cusp locations.

Under these assumptions, both proofs establish that the set {ρ̄i} suffices to recover the

total electron density ρ(r), and hence the external potential v(r), in direct analogy with

the original Hohenberg-Kohn theorem [78]. This established the equivalence of spherical

DFT and traditional DFT.

In response to these works, we were motivated to address a specific assumption un-

derlying the original proofs: the requirement that each sphericalized density be “tagged”

with its nuclear origin. In recent work [72], we have shown that this assumption is unnec-

essary. The nuclear location information is already encoded within the set {ρ̄i}, through

the preservation of nuclear cusp features. This result follows from methodology based in

distance geometry [79–81], which enables the reconstruction of three-dimensional struc-

tures (i.e. all atomic 3D coordinate information) from knowledge of the pairwise distances

between all atoms alone.

This process is illustrated numerically by plotting examples of sphericalized densities

for component atoms of two exemplar systems glycine (Fig. 27) and LiF (Fig. 28). Fig. 27

depicts the sphericalized electron density for a hydrogen atom in glycine. Each spherical-

ized density retains its central cusp, but also exhibits smaller peaks corresponding to the

nuclear cusps of other atoms in the system. These features arise from the fact that spher-

ical averaging preserves cusp behavior, even at non-central nuclei (see Lemma 2 in [72]).

By collecting the locations of these peaks across all ρ̄i, we can recover the full set of pair-
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Figure 27: Spherical density distribution as a function of radial distance from the nucleus
of a hydrogen atom of glycine. Although the electron density at the nucleus dominates the
distribution, additional peaks are easily identified numerically as local maxima (indicated
via red vertical lines), corresponding to the radial distances of other atoms from the cen-
ter. As the distance from the origin increases, the magnitude of the peaks decreases, but
they remain present. From [72].

wise distances between atoms in the molecule. Constructing a Euclidean distance matrix

from this data, we then determine the nuclear positions via classical multidimensional scal-

ing (MDS), without requiring any a priori knowledge of the 3D atomic coordinates.

5.1 Nuclear Location Reconstruction From Sphericalized Densities

We illustrate the encoding of atomic coordinate information within the spherical DFT

electron density distributions using the LiF heteronuclear diatomic and the simplest amino

acid, glycine (C2H5NO2), whose structure is depicted in Fig. 29.

For both molecules, the total molecular electron density of the molecule at its opti-

55



Figure 28: Sphericalized densities for the heteronuclear diatomic, LiF, at the equilibrum
separation 1.564 Å (2.956 a.u.) (a) Origin of sphericalized density at Li. The location of
the F atom is discernable as a peak in the distribution at the correct internuclear separa-
tion (see inset). (b) The second sphericalized density distribution, with F located at the
origin. Although the peak for Li is smaller (due to its smaller size) it is still discernable in
the inset, again at the correct internuclear separation. From [72].

mized ground state geometry was first generated using Gaussian’16 on a cubic grid with

0.0833 a.u. spacing between points. Each sphericalized electron density, found for each

atom in the molecule, was then computed as a function of the radial distance r from its

center (nucleus) by angle-averaging about the center using a custom Python code imple-

menting Eq. (29). The sphericalized sets of electron densities for each molecule were then

used to reconstruct the molecular geometry.

At the MP2/cc-aug-pvQZ level of theory, the LiF electron density distribution was cal-

culated at a 1.564 Å separation, its accepted equilibrium separation [27]. For both atoms

of LiF, the sphericalized electron density was computed as a function of the radial dis-

tance, r, resulting in Fig. 28. As can be seen in this figure, the sphericalization process for

LiF results in two distributions: one with Li located at the origin and the other with F at

the origin. For both distributions, a discernable peak occurs at a radius of 1.564 Å from

the origin.

Since LiF is a diatomic, the locations of the sphericalized peaks trivially determine the

geometry of the molecule. Each atom’s sphericalized density distribution locates the other
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Figure 29: Optimized geometry of glycine from quantum mechanical calculations, calcu-
lated using Gaussian’16. From [72].

atom 1.564 Å away. Complexity arises when more than two atoms are involved.

This was seen after performing the same process of sphericalization for the atoms of

glycine. The total molecular electron density of glycine at its optimized ground state ge-

ometry was used to generate the sphericalized densities about each of the ten glycine atoms

using the aforementioned custom Python code. The sphericalized density for atom 6 of

glycine (an H atom, labeled H1 in Fig. 29) is illustrated in Fig. 27, with six nuclear cusp

peaks indicated by vertical red dashed lines. These correspond to the nuclear cusps at the

central atom, a hydrogen, and five additional “heavy atom” (N,C,O) peaks of the glycine

molecule (N1, C1, C2, O1, O2 in Fig. 29). These Kato peaks indicate the distances of

other atoms from the center hydrogen. For each atom’s sphericalized density, these peaks

can be identified, giving information on the distances between atoms.

As illustrated in Fig. 27, the set of atomic peak distances detected within each spher-

icalized density contribute a distinct atomic “fingerprint” of information from the given

atom. Note that each calculated spherical density distribution exists as its own entity in

isolation: once computed, it retains no knowledge of the atomic location about which its

sphericalization was performed. In order to reconstruct this 3D atomic coordinate infor-
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Figure 30: Two-dimension MDS projection comparing actual coordinates (blue) to the
procrustes-aligned predicted coordinates (red). Atoms are labeled numerically.

mation, the distance information from all atoms in the molecule must be analyzed in com-

bination. This is done by constructing a distance matrix which categorizes the distances

from all atoms in the molecule to all other atoms. This distance matrix can then be used

to determine the atomic locations of the atoms in the molecule through the use of a classi-

cal multidimensional scaling (MDS) algorithm, as detailed in [81].

The actual coordinates for glycine, calculated via geometry optimization of glycine

at the MP2 level of theory using Gaussian’16, were used to evaluate the accuracy of the

atomic coordinate reconstruction using the MDS algorithm and distance matrix computed

using Kato cusp distances from the sphericalized densities (as illustrated in Fig. 27). The

predicted and actual coordinates of glycine’s five heavy atoms, which lie in a 2D plane, are

compared in Fig. 30. The agreement is excellent.

These numerical results highlight the main theoretical result of [72], namely, that the

set of sphericalized densities contains more information than previously recognized. In par-

ticular, the nuclear positions assumed necessary for the prior proofs by Nagy and Theophilou,
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are in fact already encoded within the sphericalized densities. Numerical results for LiF

and glycine confirm that this encoding is recoverable in practice, at least for heavy atoms,

using standard electronic structure data. The loss of angular information during spherical-

ization is compensated by the redundancy of the full spherical density set, which encodes

relative distances between all atomic centers.

The process of sphericalization in spherical DFT mirrors the radial basis representa-

tion used in the RBF neural network framework, where the density is expressed as a sum

of sphericalized atomistic electron densities centered at each nucleus. In both cases, angu-

lar information is discarded, and the result is a set of rotationally invariant functions. The

sphericalized densities {ρ̄i} in spherical DFT behave similarly to the RBF components in

the RBF-NN model. This parallel raises a natural question. While spherical DFT does

not define an explicit atom-in-molecule partitioning of the total molecular density, the

spherical density ensemble {ρ̄i} shares several properties expected of an atom-in-molecule

(AIM): localization and a recoverable relation to the full electron density. Therefore, it is

natural to ask whether a sphericalized set as used in spherical DFT can be regarded as an

AIM representation of the molecule.

5.2 A Sphericalized Set of Densities as an AIM

In her 2019 paper on this subject [82], Nagy addresses the question of whether a set

of sphericalized densities, as introduced in spherical DFT, resembles the pseudoatoms of

an atom-in-molecule representation. She acknowledges the resemblance between each ρ̄i

and an atomic electron density, particularly in the near-nucleus region, where the density

obeys a Schrödinger-like differential equation and displays the expected nuclear cusp be-

havior. However, Nagy argues that despite these similarities, the sphericalized densities do

not constitute an AIM in the traditional sense. In particular, they lack transferability, a

desirable property of many AIM models, in which the pseudoatom components retain simi-
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lar forms across different molecular environments.

This can be seen when analyzing the sphericalized density distribution shown in Fig. 27.

The sphericalized density distribution belongs to a hydrogen atom, but not just any hydro-

gen atom, the sphericalized density of a particular hydrogen in glycine. Such a spherical-

ized density could not be used to represent a hydrogen in another molecular system, e.g.

H2O, as remnants of other atoms in glycine exist in the density distribution for the par-

ticular hydrogen (seen as the Kato cusp peaks). This specific electron density distribution

for hydrogen could not be applied even to a different hydrogen atom in glycine, as every

hydrogen is located in a different spatial position within the molecule and has peaks in the

distribution at different locations. Transferability is lost as each sphericalized density is

unique to a particular atom in a particular molecular environment.

Nagy also notes that while the short-range portion of a sphericalized density resem-

bles that of an isolated atom, the long-range behavior reflects the presence of a molecule:

each ρ̄i integrates to the total number of electrons, not the atomic number, and decays ac-

cording to the ionization potential of the whole molecular system. This hybrid character

– locally atomic but globally molecular – arguably negates the ability of spherical set of

densities to be parts of an AIM construct, as each individual sphericalized density contains

information from the entire molecule.

Several key points must be brought up in address to Nagy’s arguments that a spher-

icalized set of densities as used in spherical DFT do not qualify as an AIM formulation.

The argument that pseudoatoms of molecular system must be transferable between other

molecular systems excludes other, well-known AIM formulations including Bader’s topo-

logical approach [25, 27]. Bader’s formulation, discussed earlier in Section 1.2.1, is charac-

terized by a partitioning of the landscape of a molecule’s electron density along zero-flux

surfaces. This also results in pseudoatoms dependent on the global, molecular environ-

ment. Since the hard spatial partitioning that defines individual pseudoatoms is dependent

on an atom’s relation to other atoms, each pseudoatom is dependent on its specific molec-
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ular environment. By Nagy’s argument that an atom-in-molecule must be transferable be-

tween molecular systems, this definition of a psuedoatom would not qualify.

Instead, it can be argued that Bader’s topological approach qualifies as an AIM formu-

lation due to its consistent application of a defined methodology. Transferability exists in

the sense that the process of dividing atoms along zero-flux surfaces can be applied to any

molecular system, if computational cost is disregarded. This sense of transferability can

also be associated with the definition of a sphericalized set of densities in spherical DFT.

The process of sphericalizing a molecular density about each nucleus in a moleculeis a pro-

cedural method that can be applied to any molecular system. In that sense it is just as

transferable as Bader’s formulation.

The more definitive requirement that prevents a set of sphericalized densities from

qualifying as an AIM is that the sum of all pseudoatoms does not sum to the total molec-

ular density at every point in space, violating the condition of Eq. (8). That is,

ρmol(⃗r) ̸=
Natoms∑
i=1

ρ̄i(⃗r), (31)

where ρ̄i(⃗r) designates the sphericalized density for an atom i in the molecule. This is es-

pecially clear due to the fact that each sphericalized density distribution integrated over

all space results in the total number of electrons. Summing all sphericalized densities to-

gether would therefore over-count the number of electrons, and the amount of density, in a

molecular system.

Thus, in agreement with Nagy, a set of sphericalized densities as used in spherical

DFT stand as a different conceptual device than an AIM, as it is most commonly defined.
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5.3 Sphericalization Used in the Ensemble AIM Formulation

The sphericalized densities used as the basis for the ensemble AIM discussed in this

work are distinct from a sphericalized set as used in spherical DFT most obviously due

to their representation in terms of isolated atom and ion densities, rather than those of a

molecular system. In this sense, they correspond to the transferable atom-in-molecule par-

titions referred to by Nagy. Each sphericalized, ensemble state density distribution exists

independently from any molecular system and can therefore be placed into any environ-

ment without any change in its form. It is only the weights defining the superposition of

the states that change with incorporation into a new chemical environment. This offers in-

sight into the scalability of the ensemble AIM. The ensemble AIM can be applied to any

molecular system without the individual partitioned ensemble densities being affected by

the increased complexity of the molecular environment.

An exploration of information encoded by a sphericalized set of densities also displays

the preservation of information despite the sphericalization process. A sphericalization

routine, by definition, removes all angular information. The dimensionality of the electron

density is reduced from three-dimensions, r, θ, ϕ, to only one, r. Despite this seeming loss

of information, we have demonstrated that information still exists in a sphericalized den-

sity about the surrounding of a nucleus. Taken together, we have demonstrated that the

set of sphericalized densities contains sufficient encoded information so as to enable the re-

construction the locations of all nuclei in a molecule.

The sphericalization of the ensemble electron densities for use in our AIM formulation

was done so in order to reduce complexity. Including an angular component to the basis

densities would have required careful consideration of the orientation of every atom in a

molecule, thus limiting the scope of potential chemical interactions and bonding characters

that can be modeled. This represents a current limitation of so-called equivariant neural

networks currently used to model potential energy functions for molecular dynamics simu-
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lations [83]. Notably, the 3rd generation of the AlphaFold neural network model of protein

structure utilizes distance, rather than angular information [48]. Using sphericalized en-

semble electron densities also enabled direct use of a radial basis function neural network.

As exemplified by our analysis of the information encoded by the sphericalization routine

in spherical DFT, the sacrifice of angular components does not signify a complete loss of

information. Complex patterns inherent within in the electron density distributions of in-

dividual atomic states survive being angularly averaged over, and contribute through their

relative spatial center locations to yield an accurate description of the total electron den-

sity of a molecule.

6 Conclusions and Future Work

This work introduced a physically-motivated, radially symmetric neural network ar-

chitecture that encodes molecular electron densities using atom-centered basis functions.

By structuring the network around ensemble representations of isolated atomic states, we

have shown that we can capture meaningful quantum chemical behavior, such as charge

transfer, bonding, and dissociation. The radial basis function neural network (RBF-NN) is

not only compact, but interpretable: each weight in the network corresponds directly to a

chemically relevant atomic state. Despite its architectural simplicity, the model is able to

track bonding transitions in diatomics and detect electron redistribution even when other

observables, like the dipole moment, fail to do so.

This work also contributes a viable scheme for modeling the hydrogen cation, H+,

within the RBF-NN framework. Additionally, the inclusion of exact hydrogen excited

states within the ensemble formulation enables a more nuanced picture of state occupa-

tions and total electron density of molecules containing hydrogen, like HF.

The RBF-NN approach demonstrates that spherical representations can still preserve

the quantum mechanical structure inherent in the electron density. In parallel work, we

have explored how this is accomplished in the formal application of spherical DFT. Quan-
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tum mechanical information is encoded in both of these representations: as spherical atomic

densities in the RBF-NN framework and as sphericalized total densities in spherical DFT.

While distinct in formulation, both approaches encode molecular information through re-

duced radial forms that remove angular dependence without discarding chemically-relevant

structure. In both cases, spherical symmetry enables a basis for representing complex

molecular behavior. The radial decomposition used in the RBF-NN reflects an ensem-

ble atom-in-molecule perspective, while the spherical DFT framework involves a system-

level electronic structure viewpoint, formally leading to atom-centric sphericalized densi-

ties. Taken together, these methods demonstrate that sphericalization – often viewed as a

simplification – can serve as a powerful encoding tool, capturing the essential features of

molecular electronic structure and chemical environments in a scalable and physically in-

terpretable way.

Future directions include extending this framework to larger polyatomic systems, where

the advantage of radial density scaling becomes even more critical. Different molecules can

be selected to represent more diverse bonding patterns, including covalent bonding (CO)

and charge polarization in homonuclear diatomics (Li2). Larger molecules can be modeled

in the future, such as amino acids, the building blocks of proteins. This is now made possi-

ble by the ability to represent hydrogen’s cation state in the RBF-NN formulation, another

important contribution of this work.

In order to model more complex bonding patterns, excited states will need to be in-

cluded in the ensemble representation for atoms other than hydrogen. The inclusion of

excited states completes the formal ensemble representation and will enable planned exten-

sions to increasingly complex bonding patterns.

Finally, this work has contributed to establishing a conceptual and practical valida-

tion for the ensemble density concept as a key component of the ensemble charge-transfer

embedded atom method (ECT-EAM) [18, 35]. ECT-EAM is a generalized force field for

describing the potential energy surfaces of molecules and materials. In ECT-EAM, the co-
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hesive energy is described using statistical ensembles of energetic contributions, in addition

to constituent pseudoatoms, with a single set of ensemble weights {ωi} applied consistently

in both energy and density ensembles. That is, the same weights, used to express the total

density as

ρ(r; {ωi}) =
Nens∑
i=1

ωiρi(r), (32)

also define the ensemble energy,

Ev[{ωi}; ρ(r)] =
Nens∑
i=1

ωiEi. (33)

By demonstrating that these weights can be learned from molecular total density data

and are sufficient to reconstruct molecular densities and represent bond formation and

breaking, the present work provides numerical validation of the ensemble density construc-

tion in preparation for integration with the ensemble energy formalism of ECT-EAM [18].
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A Python Code for Implementing the RBF-NN

The following Python code implements the Radial Basis Function Neural Network

(RBF-NN) for modeling a diatomic molecule as described in the main text. The code is

fully general, but is specialized here to the heteronuclear diatomic hydrogen fluoride (HF)

for clarity.

A.1 Neural Network Configuration

The RBF-NN is implemented using TensorFlow and Keras, incorporating a custom

layer that applies radial basis functions as activation functions. Key hyperparameters, in-

cluding learning rate, batch size, and loss function weights, are defined to guide the train-

ing process.

The core of the network is the RadialBasisFunction layer, which computes the acti-

vation of each node based on the radial distance from the atomic centers. This layer en-

capsulates the mathematical formulation of the basis functions and their dependencies on

atomic parameters. Each node corresponds to a distinct atomic charge state, with initial

weights assigned to each state to facilitate optimization during training.

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from scipy.integrate import quad

import keras.backend as K

import sys

from scipy.integrate import trapz

from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras.callbacks import Callback

from rbf_functions import M5, M6

from rbf_functions import hydrogen_density as HDen

print(’imports␣complete ’)
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trial = ’7all5exc ’

#Define parameters :

lr = 0.1 #ADAM learning rate

batch_s = 1024 #Batch Size

start_dcy = 1e-4 #ADAM weight decay (L2 regularization )

end_dcy = start_dcy

epoch_num = 500 #Max number of epochs

stopping_patience = 50 #patience for training end

epsilon = 1e-2 # Tolerance to end training

#Loss function parameters :

omega1 = 1e3

omega2 = 10

omega3 = 100

omega4 = 100

# Number of Nodes = Number of atomic states

nodes = 11

#Class Defines RBF Layer

class RadialBasisFunction(tf.keras.layers.Layer):

def __init__(self , nodes , R, N, A0, B0, C0 , D0 , Z, beta , zeta , m, alpha , gamma , eta ,

weights):

super(RadialBasisFunction , self).__init__ ()

self.units = nodes

self.R = R

self.N = N

self.A0 = A0

self.B0 = B0

self.C0 = C0

self.D0 = D0

self.Z = Z

self.m = m

self.alpha = alpha

self.beta = beta

self.zeta = zeta

self.gamma = gamma
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self.eta = eta

self.epsilon = 1e-8

#Hydrogen Charged

self.IwA0 = weights [0]

self.IwA1 = weights [1]

self.IwA2 = weights [2]

#Fluorine Charged

self.IwB0 = weights [3]

self.IwB1 = weights [4]

self.IwB2 = weights [5]

#Hydrogen Excited

self.IwA3 = weights [6]

self.IwA4 = weights [7]

self.IwA5 = weights [8]

self.IwA6 = weights [9]

self.IwA7 = weights [10]

def build(self , input_shape):

# Adds weight variables to the layer

#HYDROGEN ground (0, +, -)

self.wA0 = self.add_weight(name=’wA0’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwA0

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

self.wA1 = self.add_weight(name=’wA1’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwA1

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

self.wA2 = self.add_weight(name=’wA2’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwA2

),
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trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

#FLUORINE (0, +, -)

self.wB0 = self.add_weight(name=’wB0’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwB0

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

self.wB1 = self.add_weight(name=’wB1’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value =0.0) ,

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

self.wB2 = self.add_weight(name=’wB2’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwB2

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

#Hydrogen Excited

self.wA3 = self.add_weight(name=’wA3’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwA3

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

self.wA4 = self.add_weight(name=’wA4’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwA4

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

self.wA5 = self.add_weight(name=’wA5’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwA5

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())
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self.wA6 = self.add_weight(name=’wA6’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwA6

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

self.wA7 = self.add_weight(name=’wA7’,

shape =(1,),

initializer=tf.keras.initializers.Constant(value=self.IwA7

),

trainable=True ,

constraint = tf.keras.constraints.NonNeg ())

super(RadialBasisFunction , self).build(self.units)

def call(self , inputs):

coor = inputs

# H (0, +, -, exc)

RBF_0 = (

self.wA0 * HDen(self , coor , 0, n=1, l=0) +

self.wA1 * M5(self , coor , 0, 1, 1) +

self.wA2 * M5(self , coor , 0, 2, 1) +

self.wA3 * HDen(self , coor , 0, n=2, l=0) +

self.wA4 * HDen(self , coor , 0, n=2, l=1) +

self.wA5 * HDen(self , coor , 0, n=3, l=0) +

self.wA6 * HDen(self , coor , 0, n=3, l=1) +

self.wA7 * HDen(self , coor , 0, n=3, l=2)

)

# F (0, +, -)

RBF_1 = (

self.wB0 * M5(self , coor , self.R, 0, 2) +

self.wB1 * M5(self , coor , self.R, 1, 2) +

self.wB2 * M6(self , coor , self.R, 2, 2)

)

RBF_r = RBF_0 + RBF_1

return RBF_r
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A.2 Loss and Early Stopping Functions

The following is code used in order to evaluate characteristics of the training output as

the RBF-NN learns. The loss function (Section 2.3) is included as the function loss fit().

This function’s output is what is given to the ADAM optimizer. The early stopping routine

is also included as the class EarlyStoppingWithBestWeights(Callback).

def loss_fit(rho_true , rho_pred):

#squared difference = (rho_true - rho_pred)^2

try:

weights = model.layers [0]. weights

except NameError:

weights = model_val.layers [0]. weights

# Extract the required weights

wA0 = weights [0]

wA1 = weights [1]

wA2 = weights [2]

wB0 = weights [3]

wB1 = weights [4]

wB2 = weights [5]

wA3 = weights [6]

wA4 = weights [7]

wA5 = weights [8]

wA6 = weights [9]

wA7 = weights [10]

reduced_loss = (omega1 * (tf.reduce_mean(tf.square(rho_true - rho_pred))) +

omega2 * tf.abs((wA0 * 0) + (wA1 * 1) + (wA2 * -1) + (wB0 * 0) + (wB1 * 1) + (

wB2 * -1)) +

omega3 * tf.abs((wA0 + wA1 + wA2 + wA3 + wA4 + wA5 + wA6 + wA7) - 1) +

omega4 * tf.abs(wB0 + wB1 + wB2 - 1))

return reduced_loss

#End of training early stopping callback routine

class EarlyStoppingWithBestWeights(Callback):
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def __init__(self , monitor=’loss’, min_delta=0, patience=5, n_average =20, factor =0.9,

verbose=0, mode=’auto’, baseline=None , start_epoch =0):

super(EarlyStoppingWithBestWeights , self).__init__ ()

self.monitor = monitor

self.min_delta = min_delta

self.patience = patience

self.n_average = n_average

self.factor = factor

self.verbose = verbose

self.wait = 0

self.stopped_epoch = 0

self.best = None

self.best_weights = None # New attribute to store the best weights

self.mode = mode

self.baseline = baseline

self.loss_history = []

self.start_epoch = start_epoch

def on_train_begin(self , logs=None):

self.best = float(’inf’)

def on_epoch_end(self , epoch , logs=None):

if epoch < self.start_epoch:

return # Do not evaluate until start_epoch is reached

current = logs.get(self.monitor)

if current is not None:

if self.mode == ’auto’:

if ’acc’ in self.monitor or ’f1’ in self.monitor:

mode = ’max’

else:

mode = ’min’

else:

mode = self.mode

# Update the loss history and check for improvement

if current is not None:

self.loss_history.append(current)

if current < 5:

# average_loss = np.mean(self. loss_history [-self.n_average :])
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if current < self.best:

self.best = current

self.best_weights = self.model.get_weights () # Update best weights

self.wait = 0

else:

self.wait += 1

if self.wait >= self.patience:

self.stopped_epoch = epoch

self.model.set_weights(self.best_weights) # Set model weights to the

best weights

self.model.stop_training = True

if self.verbose > 0:

print(f’\nEpoch␣{epoch␣+␣1}:␣Early␣stopping␣due␣to␣no␣improvement␣in

␣{self.monitor }.␣Best␣weights␣restored␣with␣Loss␣{self.best}.’)

A.3 Calling the RBF-NN

The following code calls the RBF-NN and demonstrates how training and final weight

calibration data are output from the network. This includes setting up the optimizer,

ADAM, with the specific learning rate and weight decay factors. It also includes implement-

ing the architecture of the custom Keras RBF layer.

adam = tf.keras.optimizers.legacy.Adam(learning_rate=lr , decay = dcy , amsgrad=True)

# Creating a sequential model with RBF layer

model = tf.keras.Sequential ()

model.add(tf.keras.layers.InputLayer(input_shape =(3,)))

model.add(RadialBasisFunction(nodes , R, N, A0, B0, C0, D0 , Z, beta , zeta , m, alpha ,

gamma , eta , ini_weights)) #will need to add other parameters

# Compiling the model with the specified optimizer and loss function

model.compile(optimizer=adam , loss=loss_fit , metrics =[ total_charge , AtomA_sum ,

AtomB_sum , q, rmse])

# Defining an EarlyStopping callback

# early_stopping = EarlyStopping (monitor =" rmse", patience = 100, mode=’min ’,

restore_best_weights =True , start_from_epoch =500)
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early_stopping = EarlyStoppingWithBestWeights(monitor=’loss’, patience=

stopping_patience , verbose=0, mode=’min’)

# Training the model

model_history = model.fit(coor_train , rho_train , batch_size = batch_s , epochs=

epoch_num , verbose=0, callbacks =[ early_stopping ])#, validation_split =0.2 ,

callbacks =[ early_stopping ])

training_loss = model_history.history[’loss’]

#print( model_history .history.keys ())

q_per_epoch = model_history.history[’q’]

rmse_ep = model_history.history[’rmse’]

B Python Code for Evaluating the Analytic Forms of the Radial Basis

Functions

The following Python functions are called by the Radial Basis Function Neural Net-

work (RBF-NN) in order to implement the radial basis functions that describe the atomic

state electron density distributions for general neutral and ionic atomic states (B.1) and

hydrogen ground and excited states (B.2).

B.1 Analytical Fitted Models

The following code the implements of the analytical fitted models, Eq. (19), as de-

scribed in [4, 5]. The analytic models are implemented as two separate functions, M5 and

M6. M5 is used for neutral and cation charged states and M6 is used for anion states. They

differ in their inclusion of the parameter ζ, which is non-zero for anions in order to capture

their longer range decay in density due to the extra bound electron.

import tensorflow as tf

import matplotlib.pyplot as plt

from scipy.integrate import trapz
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def M5(self , coor , R, i, j):

r = tf.sqrt((coor [: ,0])**2 + (coor [:,1])**2 + (coor [:,2] - R)**2)

A_term = self.A0[i,j] * tf.exp(-2 * self.Z[i,j] * tf.abs(r))

B_term = self.B0[i,j] * tf.abs(r)**(2* self.beta[i,j]) * tf.exp(-2 * self.alpha[i,j] * tf

.abs(r))

C_term = self.C0[i,j] * (self.m[i,j] - self.Z[i,j] * tf.abs(r))**2 * tf.exp(-2 * self.

gamma[i,j] * tf.abs(r))

D_term = self.D0[i,j] * (self.Z[i,j])**2 * (tf.abs(r))**2 * tf.exp(-2 * self.eta[i,j] *

tf.abs(r))

M5 = A_term + B_term + C_term + D_term

return M5

def M6(self , coor , R, i, j):

r = tf.sqrt((coor [: ,0])**2 + (coor [:,1])**2 + (coor [:,2] - R)**2)

beta_eff = self.beta[i,j] + self.zeta[i,j] * tf.abs(r)

A_term = self.A0[i,j] * tf.exp(-2 * self.Z[i,j] * tf.abs(r))

B_term = self.B0[i,j] * tf.abs(r)**(2 * beta_eff) * tf.exp(-2 * self.alpha[i,j] * tf.abs

(r))

C_term = self.C0[i,j] * (self.m[i,j] - self.Z[i,j] * tf.abs(r))**2 * tf.exp(-2 * self.

gamma[i,j] * tf.abs(r))

D_term = self.D0[i,j] * (self.Z[i,j])**2 * (tf.abs(r))**2 * tf.exp(-2 * self.eta[i,j] *

tf.abs(r))

M6 = A_term + B_term + C_term + D_term

return M6

B.2 Exact Hydrogen Radial Densities

The following code implements the exact radial distributions for the ground and ex-

cited states of Hydrogen, as described in Section 2.4. The function inputs coordinate lo-

cation information and the quantum numbers (n, l) and outputs the radial electron distri-

bution function for the specified state. This code is a Python translation of a Matlab code

from [4].
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def hydrogen_density(self , coor , R, n, l):

r = tf.sqrt((coor [: ,0])**2 + (coor [:,1])**2 + (coor [:,2] - R)**2)

if n < 1:

raise ValueError(’Error:␣invalid␣value␣of␣n;␣Exiting ...’)

elif n > 4:

raise ValueError(’Value␣of␣n␣exceeds␣supported␣values;␣Exiting ...’)

Z = 1.0 # Nuclear charge (1 for H, but keep in code for generalizability to other

hydrogenic wavefunctions .

rscal = 2 * Z / n # Scale factor for distance (see: http :// en. citizendium .org/wiki/

Hydrogen -like_atom , referencing Pauling and Wilson)

Rnorm = Z**1.5 # Normalization factor for Rnl

# Scale the radius

rmatscal = r * rscal # scaled r values for specified value of n (denoted by rho_n in

most texts).

expfac = tf.exp(-rmatscal * 0.5) # exponential prefactor common to all Rnl

# compute radial wavefunction x angle -averaged angular wfn ( Anglenorm) for quantum

numbers (nl) and store in fMat

if n == 1 and l == 0: # R10

fmat = Rnorm * expfac * 2.0

elif n == 2 and l == 0: # R20

fmat = Rnorm * expfac * (0.5 / tf.sqrt (2.0)) * (2.0 - rmatscal)

elif n == 2 and l == 1: # R21

fmat = Rnorm * expfac * (0.5 / tf.sqrt (6.0)) * rmatscal

elif n == 3 and l == 0: # R30

fmat = Rnorm * expfac * (1.0 / (9.0 * tf.sqrt (3.0))) * (6.0 - 6.0 * rmatscal +

rmatscal **2)

elif n == 3 and l == 1: # R31

fmat = Rnorm * expfac * (1.0 / (9.0 * tf.sqrt (6.0))) * (4.0 - rmatscal) * rmatscal

elif n == 3 and l == 2: # R32

fmat = Rnorm * expfac * (1.0 / (9.0 * tf.sqrt (30.0))) * rmatscal **2

elif n == 4 and l == 0: # R40

rmatscalsq = rmatscal **2

fmat = Rnorm * expfac * (1.0 / 96.0) * (24.0 - 36.0 * rmatscal + 12.0 * rmatscalsq -

rmatscalsq * rmatscal)

elif n == 4 and l == 1: # R41

rmatscalsq = rmatscal **2
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fmat = Rnorm * expfac * (1.0 / (32.0 * tf.sqrt (15.0))) * (20.0 - 10.0 * rmatscal +

rmatscalsq) * rmatscal

elif n == 4 and l == 2: # R42

rmatscalsq = rmatscal **2

fmat = Rnorm * expfac * (1.0 / (96.0 * tf.sqrt (5.0))) * (6.0 - rmatscal) *

rmatscalsq

elif n == 4 and l == 3: # R43

rmatscalcub = rmatscal **3

fmat = Rnorm * expfac * (1.0 / (96.0 * tf.sqrt (35.0))) * rmatscalcub

else:

raise ValueError(f’Unsupported␣quantum␣numbers␣n={n},␣l={l}’)

pi = 3.141592653589793

# rhoMat (total density) is the radial wfn squared , times 1/(4* pi) for the angle -

averaged (theta ,phi) wfn -sqd component .

rho = (fmat **2) / (4.0 * pi)

return rho
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