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Abstract

Machine learning (ML) techniques that are capable of simultaneously classify-
ing and localizing objects in image data have shown promise in their ability to
identify particle tracks with significant spatial overlap. Object detection is one
method that is trained to detect tracks with bounding boxes and assign classi-
fications. Recently, the MIGDAL experiment has used object detection in their
rare event search for the Migdal effect, which consists of a nuclear recoil (NR)
and low energy electron recoil (ER) sharing a vertex. While object detection
can detect heavily overlapping ERs and NRs, it does not provide directional
information of the tracks, which is crucial for verifying the topological signature
of the Migdal effect. We therefore extend on MIGDAL’s work by utilizing ob-
ject keypoint detection, a method that, in addition to detecting tracks, is also
trained to identify key points within each detected object. We explore the use of
object keypoint detection both for vertex reconstruction and trajectory fitting
using a large sample of simulated 5.9 keV 55Fe tracks. We report preliminary
results comparing 2D vertex position identification using keypoint detection to
previously established non ML-based methods, and share our progress on fitting
2D trajectories of these tracks. Directional reconstruction of ERs is of broad
interest to applications beyond the MIGDAL experiment, including X-ray as-
tronomy, astrophysical neutrino observations, 0νββ and dark matter searches.
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Chapter 1

Introduction

Electron directionality is an important signature for a large number of particle
detection experiments in order to verify the physical origin of signals, remove
backgrounds, or confirm event topologies. It has broad applications in astro-
physical X-ray polarimetry, rare event searches, and directional dark matter
detection. Electron recoils (ERs), particularly low energy keV-scale events,
undergo random walk-like multiple scattering, and as such, directional infor-
mation can only be extracted from the beginning of the track. ERs are, in
general, the most difficult particle tracks to reconstruct due to multiple scat-
tering. Additionally, ERs ionize relatively little near their production points,
making it extremely challenging to reconstruct their vertex positions and initial
directions. Optimizing directional ER reconstruction performance is therefore
of paramount concern and can be done both algorithmically and with the proper
choice of detector technology. In this work, we focus on the former.

Expanding on X-ray polarimetry, it allows for investigation of extreme mag-
netic and gravitational fields around high-energy sources such as pulsars and
active galactic nuclei. Previous methods utilized Bragg diffraction and Comp-
ton scattering devices to obtain polarization readings. However, a high degree of
polarization and intense source flux were required for measurements. This lim-
ited observations to only the brightest source in the X-ray sky, the Crab Nebula.
These observations were only possible because of the characteristic polarization
of synchrotron emission and intense flux of the Crab Nebula. Further investi-
gations were limited by the lack of purpose-built instruments and strict source
requirements [1]. Micropattern gaseous detectors with high resolution readouts,
such as gas time projection chambers (TPCs) and Gas Pixel Detectors (GPDs)
are capable of achieving excellent angular resolution over a wide range of en-
ergies, making them ideal candidates for a variety of directional reconstruction
applications.

In late 2021 NASA launched the IXPE satellite, with three GPDs onboard.
GPDs were designed and built to determine X-ray photon polarization using
the photoelectric effect and operate on a similar principle to gas TPCs. Fig
1.1 illustrates the detection principle of a GPD: An incoming X-ray photon
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Figure 1.1: GPD used by the IXPE collaboration to detect X-ray polarization

ionizes the gas within the detector, the charge deposited by the subsequent ER
then drifts along an electric field. The charge is amplified by a Gaseous Electron
Multiplier (GEM), and is finally read out through a pixel anode. It is possible to
determine directionality based on the distribution of ionization along the track.
Electrons deposit more charge at the end of their tracks, the head, and less at
the beginning, the tail. The GPDs employed by IXPE use electron directionality
to determine the polarization of X-ray photons. This can be shown by

dσ

dΩ
∝ sin2 θ cos2 ϕ

(1− β cos θ)4
, (1.1)

which relates the resulting photoelectron direction to the polarization of the
ionizing X-ray photon, as shown in Fig 1.2a. β is the electron velocity as a
fraction of the speed of light, θ is the polar angle, and ϕ is the azimuthal angle.
More specifically, θ is the angle from the xy-plane that the photoelectron is
directed. ϕ is the angle in the xy-plane and has a cos2 relationship with the
polarization of the photon. Through this use of electron directionality much
broader observations are now possible, offering a new window into the X-ray
sky [1][8].

Gas TPCs are particle detectors that allow for full 3D reconstruction of
events and multiple readout systems. The example detector to be described
here is the TPC used by the MIGDAL collaboration in search of the Migdal
effect [6][10]. The MIGDAL detector is an optical TPC that uses low-pressure
(50Torr) gaseous CF4, Fig 1.3. CF4 has a high scintillation yield, making it op-
timal for optical readout. An electric field across the detector causes charge to
drift to a double glass GEM system that provides amplification and boosts scin-
tillation. The optical readout is a Hamamatsu ORCA-Quest qCMOS (OQC)
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Figure 1.2: Photoelectron direction is proportional to X-ray photon
polarization[5].

scientific camera, that was chosen due to its high resolution and quantum ef-
ficiency, fast readout speed, and low readout noise. The OQC views the xy
projection of the particle tracks. The optical readout system also employs a
photomultiplier tube (PMT) that detects primary and secondary scintillation
light to determine the initial ionization time. Charge is collected on an Indium
Tin Oxide (ITO) anode plate, which has 1D strips along the x-axis and uses
timing information to provide the xz projection of the tracks. The OQC, ITO,
and PMT in conjunction allow for full 3D event reconstruction [6].

Neutrinoless double beta decay (0νββ) searches are another application that
can utilize electron directionality for signal confirmation and background rejec-
tion. While all 0νββ searches rely on extreme radiopurity and excellent energy
resolution in their region of interest, experiments such as NEXT use high pres-
sure gaseous Xenon TPCs, enabling them to reconstruct event topologies. The
characteristic topology of a double beta decay event is two ERs originating
from the same vertex. To verify that an event is from double beta decay, both
electrons must be traced to the same location, which vertex reconstruction can
assist with. Similarly, for the MIGDAL experiment, the expected topology of
the Migdal effect is a nuclear recoil (NR) and an ER that share a vertex. NRs
are, in general, higher energy and deposit most of their energy at the tail, as
opposed to ERs which deposit a majority of their energy at the head. This can
act to obscure the ERs vertex. The ability to reconstruct the ER vertex will
allow for verification of the Migdal effect which has yet to be experimentally
observed.
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Figure 1.3: Diagram of the MIGDAL detector used to search for the Migdal
effect.

For the purposes of this work, we define ER trajectory reconstruction to
consist of vertex placement and axial angle reconstruction. We aim to quantita-
tively compare the performance of two methods for these two metrics. The first
method of trajectory reconstruction is a novel application of machine learning
using the Ultralytics YOLOv8 neural network to make predictions on vertex
location and angular orientation. The second method is the re-implementation
of an existing analysis algorithm, used by the IXPE collaboration, that is based
on mathematical analysis of the moments of the charge distribution.

In addition to ER trajectory reconstruction, work was conducted on a hard-
ware project to develop a high resolution detector to detect the Migdal effect.
This detector seeks to probe the low energy regime of the Migdal effect. Chapter
2 will discuss this work, conducted over the summer of 2024 at the Los Alamos
Neutron Science Center (LANSCE), which mainly focused on hardware tasks
to reduce electronic noise in the detector. The remainder of the thesis describes
my work on directional algorithms for ER tracks. Chapter 3. details the com-
parison of the ER trajectory reconstruction methods. Chapter 4 discusses the
conclusions drawn from this work.
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Chapter 2

Hardware Work

Figure 2.1: Mini-CAPTAIN DAQ

The hardware portion of this project
was performed at LANSCE in col-
laboration with the Weak Interac-
tions group. The goal of work was
to develop a charge readout for use
with a negative-ion GEM TPC for
a MIGDAL Phase II experiment to
probe the low energy regime of the
Migdal effect. The Phase II detec-
tor has a similar setup to the current
MIGDAL detector but instead of a
camera readout it has 2D (xy) strips
that read out charge.

LANSCE currently houses the
DAQ for the Mini-CAPTAIN liquid
argon TPC. The goal of the Cryo-
genic Apparatus for Precision Tests
of Argon Interactions with Neutrinos
(CAPTAIN) project was to increase
understanding of operating large vol-
ume liquid argon TPCs. Mini-

CAPTAIN made the first measurement of high energy neutron interactions in
argon [4]. LANSCE also houses a GEM-based TPC from CERN that uses 2D
strips to readout charge. The goal of the project at LANSCE was to instrument
the strip readout with the Mini-CAPTAIN electronics and modify the DAQ
software to work with the new MIGDAL TPC.

At LANSCE work was done on reducing base noise for the test detector
and characterizing the readout noise of the DAQ. The initial noise was greater
than 1 V peak-to-peak, too high to detect any physical events. To reduce this
base noise to the scale of ∼ 100 mV so it was possible to detect real events
from cosmic rays or background radioactivity, shielding was built to house the
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detector. The detector was covered with a Faraday cage constructed using
copper mesh, and the whole setup was placed on a custom-built table (Fig
2.2a). Reducing the noise would then allow us to connect the detector to the
mini-CAPTAIN electronics and start debugging the full system.

The detector was constructed from a CERN triple-GEM detector kit. It
had a wire mesh cathode, that high-voltage could be applied across, then a
2.5 mm drift gap to the top of GEM 1. Between each GEM there was a 2
mm transfer gap, and a 1.5 mm induction gap between the bottom of GEM 3
and the strip readout. The strip readout was not used during these tests to
avoid introducing uncertainty in the source of noise, whether noise was from
the detector or DAQ. GEMs are a composite sheet consisting of a substrate,
an insulator, and two thin conducting sheets, in this case copper, on either
side of the substrate with a grid of holes through the whole sheet [2]. They
operate through a voltage differential between the top and bottom surfaces that
generates a strong electric field. Charge that drifts through a GEM undergoes
avalanche gain, multiplying the initial charge for easier detection. While the
detector operated a 75:25 Ar:CO2 gas mixture flowed through it. The GEM
signals were read out through an ORTEC 142 preamplifier and a Teledyne
T3DSO2000A series digital oscilloscope.

(a) Detector on the table built for it,
with the Faraday cage over it.

(b) Close up of the detector under the
Faraday cage.

Figure 2.2

Several different voltage divider schemes were tested to characterize the out-
put signals of the detector and ensure the required voltage differential across the
GEMs. Depending on the divider scheme, one or two high-voltage power sup-
plies were utilized to apply a voltage differential across the GEMs. Depending
on the voltage divider setup, readout was either off the ground of the detector,
the bottom of GEM 3, or the top of GEM 3.

The initial detector setup had negative high voltage input to the cathode
with the voltage divider scheme shown in Fig 2.3a. The next divider scheme
disconnected the bottom of GEM 3 from ground to read off through the pre-
amplifier and oscilloscope. The setup that was most extensively tested used the
top of GEM 3 for readout both with and without positive high-voltage biased
through the pre-amplifier. This is shown in Fig 2.4a. The final divider configu-
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(a) Original voltage divider set up. (b) Second voltage divider set up.

Figure 2.3

ration tested had the bottom of GEM 2 connected to ground and readout from
the top of GEM 3. Noise tests were conducted in all divider set ups; shielding
various components and slowly raising the voltage input to the detector.

After considerable effort to find and eliminate sources of electronics noise,
it had been reduced to ∼ 30 mV peak-to-peak, low enough to detect events,
Fig 2.6. The final measurements were done using the final divider setup shown
in Fig 2.3b. Raising the GEM voltages to the point where gas amplification is
expected in the 1 atmosphere 70:30 Ar:CO2 gas mixture, 1 potential background
event was recorded, either a cosmic ray or from radioactivity. This is shown in
Fig 2.6. Unfortunately, this was also the last week work was being conducted,
so we were unable to collect more data to verify this event.
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(a) Voltage divider set up tested most exten-
sively. Positive high-voltage was biased through
the pre-amplifier to the top of GEM 3.

(b) Final Voltage divider set up. De-
tector configuration when potential
event was detected.

Figure 2.4

Figure 2.5: Image of detector in divider set up 2.
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Figure 2.6: Potential event recorded on the test detector. This was in the two
GEM setup with 1050 V total,
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Chapter 3

Software Work

This section will discuss the work on developing and testing algorithms for direc-
tional reconstruction of ER tracks. Two reconstruction algorithms were eval-
uated and quantitatively compared. A novel application of machine learning
using the Ultralytics YOLOv8m-pose (YOLO) neural network, and a recon-
struction of a moment analysis based algorithm used by the IXPE collaboration
to analyze X-ray photoelectrons. The analysis is performed on 2D projections
of simulated 3D ER tracks. These methods are evaluated on two criteria: vertex
distance and angular resolution. Vertex distance is the mean distance between
the true vertex and the reconstructed vertex. Angular resolution is the mean an-
gle of the distribution of angles between the true direction and the reconstructed
direction. This work uses ERs simulated to the specifications of the MIGDAL
TPC. Primary electron tracks are generated in DEGRAD (public software de-
veloped by CERN used to simulate electron tracks) at 5.9 keV in 50 torr of
CF4 with drift, diffusion, and gain added representative of the MIGDAL TPC.
The outputs are then digitized according to the output of the OQC used by
MIGDAL for optical readout. Only single event ERs that were fully contained
within the detection volume were used.

(a) Object detection (b) Keypoint detection
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3.1 YOLO

Deep learning-based object detection is a modern computer vision application
where an algorithm is trained to simultaneously classify and localize any number
of objects in image data. Convolutional neural network-based object detection
algorithms similar to YOLO have broad applications outside of physics but have
also proven helpful for high energy physics applications such as the MIGDAL
experiment’s search for the Migdal effect [7]. Part of the motivation to imple-
ment YOLO was its out-of-the-box support of simultaneous object and keypoint
detection. Keypoint detection goes a step further than object detection; it de-
tects predefined keypoints in addition to detecting objects with bounding boxes.
Crucially, the sets of points that keypoint detection algorithms evaluate are of
fixed length and ordered which offers an opportunity for directional reconstruc-
tion of track trajectories. In this application, YOLO is trained to identify the
first two primary ionization points of a simulated ER assuming a perfect signal-
to-noise ratio and no noise. YOLO performs supervised learning, meaning it is
trained on images labeled with the bounding box and keypoint coordinates, and
event classification. The coordinates of the bounding box are the center, width,
and height of the box, and the keypoint coordinates are the first and second
primary ionization points of the primary track.

Train Test Validate Evaluation

Number of Events 70690 8837 8836 58778

Table 3.1: Dataset partitioning for ML training and evaluation

(a) Image of an ER event, the true electron
track is in black. The bounding box and
first two primary ionization points are in
white.

(b) Image of YOLOs predictions for an
event in red and the truth in white

Figure 3.2

YOLO returns its predictions in the same format it is trained. This allows it
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to simultaneously predict the location of the vertex and direction of the track.
The first predicted point is the vertex, and the second is used with the vertex to
determine the direction of the track. To maintain event structure and increase
dynamic range to include more energetic events, the images are set to a log scale.
An early stopping criterion was defined such that if there was no improvement
in the mAP@50:95:5 metric [11] over 25 successive training epochs, training was
stopped. A vector is defined using the first two ionization points of the primary
ionization distribution to approximate the best possible 2D angular resolution.
This was used to characterize the angular performance of both YOLO and the
moment analysis reconstruction.

3.2 Moment Analysis Reconstruction

To quantitatively compare YOLO’s results with existing electron directional
reconstruction methods, we recreated a moment-based analysis algorithm used
to analyze astrophysical X-ray polarimetry data from the IXPE experiment
[3][9].

The moment analysis reconstruction is based on the determination of or-
thogonal principal axes for the distribution of charge. The length of these axes
define the major and minor principal axes of a weighted ellipse fit to each track.
The initial coordinates xi, yi, qi, are the xy coordinates of each pixel that col-
lected charge, and q the intensity of that charge. The barycenter of the charge
distribution, shown in Fig 3.5 (a), is calculated through the first moment, Eq
3.1, and is fixed as the origin of the coordinate system through a translation,
xi → xi − xb, yi → yi − yb. It is the charge-weighted mean of the distribution.

xb =
Σiqixi

Σiqi

yb =
Σiqiyi
Σiqi

,

(3.1)

The second moment, the variance, of the charge distribution can be calcu-
lated along an arbitrary angle ϕ with respect to the x-axis.

M2(ϕ) =
Σiqix

′2
i (ϕ)

Σiqi
=

Σiqi(xi cosϕ+ yi sinϕ)
2

Σiqi
(3.2)

Imposing:

∂M2(ϕ)

∂ϕ
= 0 (3.3)

allows for two values of ϕ, in the interval [−π, π], to be found.

ϕmax,min = −1

2
tan−1

[
2Σiqixiyi

Σiqi(y2i − x2
i )

]
(3.4)
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These maximize and minimize Eq 3.2. As such ϕmax and ϕmin define the
angle of rotation, from the x-axis, of the the major and minor principal axes
of the weighted ellipse.

√
M2(ϕmax) defines the length of the major axis of the

ellipse. The eccentricity e of the ellipse can be expressed as ϵ the ratio of Mmax
2

and Mmin
2 .

ϵ =
Mmax

2

Mmin
2

=
1√
1− e

(3.5)

The third moment, the skewness, is used to determine on which side of the
barycenter the Bragg peak lies, whether it is positive or negative along the major
axis. To create a reconstructed vertex, the direction opposite the Bragg peak is
used.

M3 =
Σiqix

′3
i (ϕmax)

Σiqi
=

Σiqi(xi cosϕmax + yi sinϕmax)
3

Σiqi
(3.6)

A function of ϵ and
√
M2(ϕmax) is used to determine how far along the

major principal axis the reconstructed vertex should be.

d = f(ϵ)
√
Mmax

2 (3.7)

Figure 3.3: Linear fits to distribution of vertex to barycenter distance and ellipse
major axis length
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Figure 3.4: 2D histogram of distances between vertex and barycenter and ellipse
major axis length. The black points show the mean distance between vertex and
barycenter for each bin.

Three linear functions, fj(ϵ); j ∈ {1, 2, 3}, were determined by performing
first order polynomial fits to the distribution of distances between the vertex
and the barycenter against the length of the major axis of the ellipses. Higher
order polynomial fits had reduced χ2 values that suggested extreme overfitting
of the data. As such, we chose linear fits for separate domains. Despite the
reduced χ2 for the linear fits remaining below unity we opted to use them to
reduce free parameters. To ensure better fits, three domains of ϵ were defined
and fits were performed separately on each domain. f1(ϵ) is fit for events with
3 ≤ ϵ < 5, f2(ϵ) for events with 5 ≤ ϵ < 8, and f3(ϵ) for events with 8 ≤ ϵ.
A cut is defined so only events with ϵ > 3 were evaluated, these are events
that are more eccentric. Events with low eccentricity are more circular and
thus it is more difficult to extract directional information from them. However,
this cut does introduce a significant efficiency loss. This cut was introduced by
the IXPE collaboration to ensure that the algorithm was was being applied to
optimal tracks, so we have chosen to carry that over to this analysis.

After a reconstructed vertex is found, the analysis is performed again to find
a second reconstructed vertex and attempt to determine angular orientation.
The second moment analysis begins by defining a horseshoe region around the
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Figure 3.5: a) Image of an ER event. b) Barycenter of the track as the origin
with the truth vertex. c) The major and minor principal axes with the first
reconstructed vertex in red, true vertex in black, and barycenter in white. d)
The horseshoe region where the second moment analysis is performed. e) The
major principal axes and reconstructed vertices from both moment analyses,
1st in red and 2nd in yellow. The true vertex is black and the white line is
the true direction. f) The horseshoe region where the second moment analysis
is performed. The weighted ellipse that is defined by the length of the major
and minor principal axes in red. The major principal axes and reconstructed
vertices from both moment analyses, 1st in red and 2nd in yellow. The true
vertex in black and the true direction in white. Shows all previous steps and
ellipse.
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Figure 3.6: Linear fits to distribution of vertex to reconstructed vertex distance
and ellipse major axis length for the second moment analysis as well as the
events that were cut when performing the fits. These events were still fully
analyzed.

barycenter containing the reconstructed vertex. Only charge that falls within
that region is considered for the rest of the analysis. This charge is additionally

weighted by w = e−
d

w0 where d is the distance from the vertex and w0 is 0.1.
w0 was chosen to significantly weight the pixels, but maintain more statistics.
At smaller w0 values a substantial number of the events would drop out.

The first reconstructed vertex is treated as the barycenter, coordinates are
translated so it is the origin. Then the second and third moments are calculated.
New fits are determined similarly to the first fits. The same three domains of ϵ
were defined and fits were performed on the distribution of distances between the
first reconstructed vertex and the true vertex, and the lengths of the major axis
of the ellipse formed during the second moment analysis. A number of events
were cut out when performing the fits, events that the first moment analysis
had determined the wrong direction along the major axis and events that were
more in the z extent than x or y. These events were only cut for the purpose of
determining the distance along the major axis of the second moment analysis;
they were still put through the complete analysis and are reported in the results.
Linear fits were chosen again to reduce the number of free parameters and
to remain consistent in polynomial degree across all ϵ domains. The angle of
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Figure 3.7: 2D histogram of distances between vertex and reconstructed vertex
and ellipse major axis length for the second moment analysis. The black points
show the mean distance between vertex and reconstructed vertex for each bin.

the first major principal axis is considered the reconstructed electron direction.
Angular resolution is determined by finding the angle between the reconstructed
electron direction and the truth direction from DEGRAD.

3.3 Results

Results were quantified by comparing vertex distance and angular resolution
between YOLO and the IXPE algorithm. We define vertex distance as the
Euclidean distance between the reconstructed vertex and the first primary ion-
ization point of the simulated track, the truth vertex. Angular resolution is
defined as the mean of the distribution of angles between the true initial di-
rection of the ER and the reconstructed direction. A truth angular resolution
was also calculated using the vector created by the first two primary ionization
points as the reconstructed direction. We define this vector to represent the
best reconstruction of the electron direction.

The results of this analysis are listed in Table 3.2. YOLO was additionally
evaluated separately on the same subset of the dataset the moment analysis
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(a) Vertex distances for YOLO, the 1st moment
analysis, and the 2nd moment analysis

(b) Distribution of angles between
the reconstructed track axis and
true axis for YOLO and the 1st

moment analysis. The truth dis-
tribution is the angle between the
true electron direction and the vec-
tor formed from the first two pri-
mary ionization points.

Figure 3.8

was fully performed on, events with ϵ > 3. Overall, YOLO performed best on
vertex placement, performing better than either moment analysis on the same
subset of the dataset and better on the whole dataset. We ignore head-tail
in our evaluation of angular resolution, which restricts the angle between the
reconstructed and truth axis of a track to the domain of [0◦, 90◦] with 45◦ –
the angle between two random axes on a plane – being the limit of no angular
resolution. Overall, we found the first moment analysis to slightly outperform
both YOLO and the second moment analysis in angular resolution, however
all of these methods performed similarly and were hardly better than random
chance. Given that we achieve an average angular resolution of 37.6 degrees with
knowledge of the truth-simulated primary track, there is room for improvement
in our algorithmic angular reconstructions.
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(a) Vertex distances for YOLO and both moment
analyses on the subset of tracks with ϵ > 3

(b) Distribution of angles between
the reconstructed track axis and
true axis for YOLO and the 1st

moment analysis on the subset of
events with ϵ > 3. The truth
distribution is the same as in Fig
3.8b.

Figure 3.9

Analysis Method % of
Dataset

Mean Vertex
Distance (mm)

Mean Angular
Resolution

YOLO 100 0.64± 0.002 42.9± 0.11◦

YOLO
(ϵ > 3 cut)

58.6 0.58± 0.003 42.7± 0.14◦

1st Moment Analysis 58.6 0.84± 0.004 42.0± 0.14◦

2nd Moment Analysis 54.4 0.66± 0.002 42.3± 0.14◦

Table 3.2: Analysis results for each method. The uncertainty on each measure-
ment is the standard error of the mean.

21



Chapter 4

Conclusion

Many experiments require electron directionality for a wide range of applica-
tions, especially those that involve rare event searches. In particular, it can
be used to verify the origin of a signal, remove backgrounds, or confirm event
topologies. The IXPE collaboration currently uses electron directionality to
determine the polarization of ionizing X-rays from astrophysical sources. Re-
constructing electron trajectory is also essential for validating the topology of
rare events such as from 0νββ or the Migdal effect. As stated before, ERs have
complicated trajectories similar to a random walk. Therefore, reconstructing
their initial direction can only be done at the start of their tracks, i.e. the
interaction vertex. Two methods of vertex reconstruction were evaluated here.

Novel ML methods of ER vertex reconstruction are viable. For the dataset
tested here, YOLO had better overall performance on vertex placement and par-
ticularly the subset that the moment analysis performed best on. Both methods
were on par for angular resolution. The first moment analysis performed best
at determining a reconstructed direction, but there was a significant efficiency
loss. At this electron energy, YOLO shows promise and has results compara-
ble to moment analysis event reconstruction. We are excited to continue this
work by comparing YOLO’s capacity at multiple electron energies and to test
the performance of an additional event topology-based track fitting algorithm.
These results have wide-ranging applications and introducing more energies may
broaden their apparent implications..

22



Acknowledgments

I would like to thank Professor Dinesh Loomba and Dr. Jeffrey Schueler for
their support and guidance throughout my work on this project. I am also
grateful to Dr. Steve Elliott and Dr. Ralph Masssarczyk at LANSCE for their
instruction and help while I conducted work over the summer. I would also like
to thank Mark Flynn for helping me when I ran into coding issues.

23



Bibliography

[1] R. Bellazzini and F. Muleri. X-ray polarimetry: A new window on the
high energy sky. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 623(2):766–770, 2010. 1rs International Conference on Frontiers in
Diagnostics Technologies.

[2] R. Bouclier, M. Capeans, W. Dominik, M. Hoch, J.-C. Labbe, G. Million,
L. Ropelewski, F. Sauli, and A. Sharma. The gas electron multiplier (gem).
IEEE Transactions on Nuclear Science, 44(3):646–650, 1997.

[3] A. Di Marco et al. A weighted analysis to improve the x-ray polarization
sensitivity of the imaging x-ray polarimetry explorer. The Astronomical
Journal, 163:170, 04 2022.

[4] C.E. Taylor et al. The mini-captain liquid argon time projection chamber.
Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, 1001:165131,
2021.

[5] E. Costa et al. An efficient photoelectric x-ray polarimeter for the study of
black holes and neutron stars. Nature, 2001.
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