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Abstract

Our current cosmological model operates under the assumption that dark matter is cold
(wdm = 0). In this work, we challenge this assumption by revisiting a model of dark
matter inspired by an analogy to BCS superconductivity, known as superconducting
dark matter (SCDM). After reviewing the field-theoretic foundations of the model, we
derive the necessary equations to implement it as a fluid in cosmological Boltzmann code
solvers, with an emphasis on its decaying properties, which allow for a greater abundance
of dark matter in the early universe. Although observations of the matter power spectrum
and CMB anisotropies suggest that SCDM predicts enhanced structure formation and
anisotropies across all scales, the model generally remains within observational bounds
when compared to recent cosmological data. This suggests a possible relaxation of the
coldness requirement, inviting the development of new models to further explore the
nature of dark matter.

2



Acknowledgments

I would first like to thank Professor Francis-Yan Cyr-Racine for his support and guidance
since our first project together in the summer of 2023. Thank you for teaching me the
importance of rigorous and meaningful work, and for welcoming me into the particle cos-
mology group at UNM. I am also grateful to David, Kylar, and John for their guidance
and insight throughout my studies in cosmology.

I would like to thank Professor Rouzbeh Allahverdi for the time we spent working on
thermal quantum field theories—work that laid the foundation for this project—as well
as for our discussions on the field theory underlying superconducting dark matter.

Finally, I want to thank my parents for their unwavering support of my education at
UNM as an international student. It is thanks to their encouragement and sacrifices that
I have had the opportunity to complete this research project.

3



Chapter 1

Introduction: The Current State of
Cosmology

1.1 Our Universe

1.1.1 The Cosmological Principle and Expansion

Our universe, much like oceans that appear calm and flat when viewed from a distance,
appears uniform and isotropic when observed on the largest scales. In other words, there
is no preferred location or direction in which to study the cosmos. This assumption,
known as the cosmological principle, is one of the foundational pillars of modern cos-
mology.

It is this large-scale uniformity that allows us to speak of the universe’s constituents in
a simplified and meaningful way. When we refer to “matter” in cosmology, we are not
concerned with local concentrations—such as stars, galaxies, or clusters—but rather with
how matter behaves and distributes across the universe as a whole.

Our universe, from this perspective, is made out of three main ingredients: matter, radi-
ation, and so-called dark energy. One may also speak of curvature as a component that
changes the dynamics and evolution of the universe, but in this work we will be working
on a spatially-flat universe.

Although flat, our universe is expanding over time [Hub29]. The degree by which our
universe expands is quantified through a quantity known as the scale factor, a(t). The
scale factor measures how the distance between two objects grows as time progresses.
The rate of expansion in the universe is commonly referred to as the Hubble parameter:

H(t) =
ȧ(t)

a(t)
, (1.1)

where a dot represents a derivative with respect to coordinate-time.

In an expanding universe, the wavelengths of photons expand in direct proportion to
the scale factor. This is observed as a discrepancy between the wavelength of light
emitted by a source and the received wavelength by an observer. Observers will always
detect a longer (towards the red-side of the light spectrum) wavelength. We refer to the
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(fractional) change in wavelength as the redshift z of a source, and it is given by:

z ≡ λreceived − λemitted

λemitted

(1.2)

Both the scale factor and redshift provide alternative and useful ways to talk about time
in a cosmological context. By normalizing the scale factor to

a(ttoday) = 1, (1.3)

we obtain a dimensionless ruler a ∈ (0, 1] which, instead of expressing age in units of
time, expresses the relative size of the universe at any given moment. When we speak of
the universe at scale factor a = 0.5, we speak of the time when our universe’s size was
half of what it is today. This ruler allows us to use redshift as a time descriptor as well.
Since (assuming scale factor normalization)

1 + z =
1

a(temitted)
, (1.4)

A source’s redshift z tells us that the received light was emitted at the time when the
universe was 1

1+z
of its current size.

1.1.2 Ingredients

As discussed earlier, our universe can be described by three main components: matter,
radiation, and dark energy. These categories can be defined in several equivalent ways,
but the most useful for our purposes is through the equation of state,

w =
p

ρ
(1.5)

which characterizes the ratio of pressure p and energy density ρ of a fluid component of
the universe. Conservation of energy and momentum,

∇µT
µ
ν = 0, (1.6)

provides an evolution equation for the energy density of a fluid given its equation of state:

ρ̇

ρ
= −3(1 + w)

ȧ

a
. (1.7)

The solution for ρ follows:
ρ ∝ a−3(1+w), (1.8)

where we observe that the value of w directly sets how the energy density of the fluid
dilutes over time.

When we speak of matter, we refer to a few things: it includes baryonic matter (i.e.
the stuff we are made off), as well as any other substance that behaves like “matter”:
the pressure of the species is much smaller than its energy density [Bau22]. Effectively,
the equation of state for matter is w = 0, which in turn implies that the energy density
scales as

ρm ∝ a−3. (1.9)
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Dark matter, a component to be justified latter, behaves like ordinary matter in the
above sense (w = 0). What makes it different is how it interacts (or perhaps, how it does
not interact): dark matter does not interact electromagnetically, meaning it neither emits
nor absorbs light—hence its name and the idea that we “can’t see it”. Dark matter is
also likely to not have strong and weak interactions. As such, dark matter can be thought
of as matter that interacts only gravitationally.

Radiation, contrary to matter, has a non-negligible amount of pressure. In particular,
anything with equation of state w = 1/3 is called radiation. The radiation category
includes light (low in mass) particles, photons, neutrinos, and any other relativistic species
[Bau22]. Conservation of energy and momentum tells us that

ρr ∝ a−4 (1.10)

Where the extra power of a−1 (relative to matter evolution) comes from the fact that rel-
ativistic particles get redshifted. As their wavelength increases, their energy (E = hc/λ)
decreases.

Dark energy is characterized by its negative pressure, with w = −1 [Bau22]. This
equation of state tells us that

ρde ∝ a0 = 1, (1.11)

meaning that the energy density never dilutes. If the universe expands, this means that
energy has to be created in order to keep ρde constant. Some candidates for dark energy
include vacuum energy (the energy of empty space), a cosmological constant (Λ), and
other models where w isn’t always -1, but varying in time.
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Figure 1.1: Dilution of energy densities. As the universe expands, radiation
energy density decays faster than matter, while the energy density of dark energy
remains constant. In this example, all three energy densities where set to 1 at
a = 1/2. When evolved to today (a = 1), ρtodaym = 1/8, which is greater than the

radiation energy density ρtodayr = 1/16.
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1.1.3 Cosmological Observables: the Universe’s Blueprint

The conditions in the early universe did not allow protons and electrons to bond and
form even the simplest atom: hydrogen. Instead, the universe was an immense soup of
individual particles, constantly flying around and scattering off one another. In particu-
lar, photons interacted heavily with free electrons through Thomson scattering [Bau22].
As a result, photons had an extremely short mean free path1, rendering the universe an
opaque, foggy mix of radiation and matter.

Once the temperature dropped to around ∼ 3500 K [Bau22, Wei08], the universe entered
the recombination era2, during which conditions allowed protons and electrons to form
neutral hydrogen atoms. This led to a substantial drop in the density of free electrons.

Even with a much lower free electron density, photons had one last challenge to overcome
before traveling freely through the universe. The photon mean free path wasn’t large
enough for them to travel freely. Photons have to overcome the expansion of the universe
to travel freely. We quantify this through the Hubble length, H−1, which is the length
at which objects recede at the speed of light from each other due to the expansion of the
universe.

Once the universe cooled down enough (∼ 3000 K), the photon mean free path became
larger than the Hubble length, which in combination with an even lower density of free
electrons, allowed photons to travel freely through the universe. It is at this point in time,
known as last-scattering, that the universe became transparent [Bau22]. The Cosmic
Microwave Background (CMB) represents a picture of the universe at that time. For
a while, direct measurements of the CMB seemed to indicate that this faint glow had no
anisotropies. We know today that it indeed has anisotropies (as observed by the COBE
[COB92], WMAP [WMA03], and PLANCK [Pla14, Pla20a] experiments/collaborations.),
implying that the early universe wasn’t completely smooth as we thought [Dod03].

Figure 1.2: Improvements in the observations of CMB anisotropies
over time. These color maps represent fluctuations in temperature. COBE
had a sensitivity of ∼ 200 µK, with an angular resolution of ∼ 420 arcminutes.
WMAP had a sensitivity of ∼ 10µK, with an angular resolution of 12 arcminutes.
PLANCK had a sensitivity of ∼ 2 − 5 µK with an angular resolution of ∼ 5
arcminutes. This figure was stitched by the author with no further manipulations.

1The average distance a particle travels before interacting.
2Despite the name, there was no prior “combination.” The term “recombination” was borrowed from

plasma physics.
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Before COBE, heat maps of like the ones in Fig. 1.3 were smooth, showing a uniform
glow. We are now able to see fluctuations (grainy features) due to improvements in ob-
servational equipment.

CMB anisotropies can be quantified through an angular power spectrum. By decomposing
temperature variations into spherical harmonics, we are able to write down amplitudes
of fluctuations as a function of angular scale.
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Figure 1.3: Planck TT Power Spectra. Blue points with error bars show the
measured temperature fluctuations by the Planck collaboration in 2018. The red
curve is a computed spectra for a ΛCDM model that best fits the Planck 2018
data.

Spectra come in different types. In this work we will focus on the TT (temperature-
temperature) CMB power spectrum, which measures correlations in temperature fluctu-
ations.

These small fluctuations in the CMB were amplified over time as the universe evolved,
eventually giving rise to the large-scale structure we observe today. Galaxies, clusters,
and cosmic filaments all trace their origins back to these primordial perturbations. To
study the distribution of matter on cosmic scales, we turn to another key observable: the
matter power spectrum (MPS). Just as the CMB’s TT power spectrum quantifies the
amplitude of temperature fluctuations across different angular scales, the MPS measures
the amplitude of matter density fluctuations as a function of spatial scale in the late-time
universe.
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Figure 1.4: Matter Power Spectra for best fit ΛCDM universe. This
matter power spectra was computed assuming a ΛCDM universe, using the best
fit parameters found by [Pla20a].
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Contrary to CMB spectra, the MPS of the universe is not something we can measure
directly. Instead, we use statistical inference on large-scale structure surveys (for example,
DESI), with the caveat that one must assume a cosmological model beforehand.

1.1.4 Dark matter and ΛCDM

Numerous cosmological and astrophysical observations suggest the presence of more mat-
ter than can be observed. As a first example, anisotropy surveys of the CMB can dis-
tinguish contributions from regular (baryonic) matter and dark matter. Looking at the
matter density Ωmh

2 = 0.1430±0.0011 found in [Pla20b], the greatest contribution comes
from dark matter: Ωch

2 = 0.1200± 0.0012.

Large-scale structure also provides compelling evidence for dark matter. It was shown
in [TS04] that the distribution of galaxies, as observed by the Sloan Digital Sky Survey
(SDSS), matches the predictions of a universe that includes cold dark matter.

These are just two among many observations that support the existence of dark matter.
Others include galaxy cluster dynamics [Zwi37], galaxy rotation curves [Rub80], and
gravitational lensing in merging clusters [Clo06]. Despite this indirect evidence, dark
matter has yet to be detected directly. We thus arrive to one of the open problems in
cosmology:

What is the nature of dark matter?

Since the early 2000s, we have adopted the ΛCDM model of cosmology as our standard
cosmological framework. This model works on the following assumptions: The universe
is flat, homogeneous, and isotropic at large scales. Around 69% of the universe is made of
dark energy, here modeled as a cosmological constant Λ, 5% of the universe is ordinary
baryonic matter, and the remaining 26% consist of cold dark matter (CDM).

CDM refers to dark matter that is pressureless, that is, wcdm = 0. As a slow-moving,
massive species that interacts only gravitationally, CDM provides a simple and effective
mechanism for clumping and driving the formation of the large-scale structure observed
in the universe today.

1.2 Moving beyond CDM: prelude to SCDM

Despite the successes of the ΛCDM model, it still faces challenges at both small and large
scales. One of the most prominent issues at large scales is the Hubble tension, where
we have a discrepancy between the inferred value of the Hubble constant H0 from early
and late-universe measurements [RCY+19, VTR19]. Similarly, the S8 tension refers to
the discrepancy in the measurement of the amplitude of matter clustering, S8, between
weak lensing observations and the predictions of the ΛCDM model when fitted to CMB
surveys. At small scales we have the too-big-to-fail [BK11], core-cusp density profile
[de 10], and the too-dense-to-be-satellite problems [SL21], among others.
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These challenges have inspired countless modifications to ΛCDM. In this work, we will
take a different approach and question a fundamental assumption of the model:

Must wdm = 0 in order to work?

Instead of parametrizing a wdm(a) curve, we focused our attention on the model of su-
perconducting dark matter (SCDM), which offers underlying physical mechanisms
and principles to justify the behavior of dark matter dynamically.

First introduced in a cosmological context by [TWZZ24], superconducting dark matter
(SCDM) is based on the Nambu–Jona-Lasinio (NJL) model [NJL61], which itself was
inspired by the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity [BCS57].
In BCS theory, there is a critical temperature below which free electrons in a conductor
form Cooper pairs, lowering their energy and giving rise to superconductivity. Our work
follows [LC24], where thermal corrections to SCDM were considered for the first time.

As we will show later, SCDM features an analogous transition, after which the equation
of state wdm, which we will now refer to as wscdm, decays from 1 to w0 ≪ 1, its present-day
value. The central question of this work is:

How large can w0 be in this model while still
matching the predictions of ΛCDM?
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Chapter 2

Superconducting Dark Matter

2.1 Theory

The fermionic theory of SCDM follows:

LSCDM = ψ(iγµ∂µ −m)ψ − κψγ0γ5ψ +
(ψψ)2

M2
(2.1)

Where ψ is the spin 1/2 dark matter field, ψ̄ ≡ ψ†γ0 its Dirac adjoint, γ0 is the first of
four (γµ, µ = 0, 1, 2, 3) Dirac matrices, and γ5 ≡ iγ0γ1γ2γ3 is the “fifth” Dirac matrix,
an operator capable of distinguishing between the left- and right-handed parts of the
fermion ψ (i.e., it acts as a projection operator). Using dimensional analysis, we find

that the model’s parameters κ and M have dimensions [κ] = [M ] = [1]. The term + (ψψ)2

M2

constitutes a four-fermion, scalar, attractive, self-interaction.

The −κψγ0γ5ψ term doesn’t represent an interaction, at least not conventionally. It is
relevant to expand the bilinear:

−κψγ0γ5ψ = −κψ†γ0γ0γ5ψ

= −κψ†γ5ψ

= −κψ†γ5(ψL + ψR)

= −κψ†(−ψL + ψR)

= −κ(ψ†
L + ψ†

R)(−ψL + ψR)

= −κ
(
− ψ†

LψL + ψ†
RψR + ψ†

LψR − ψ†
RψL

)
= −κ

(
− ψ†

LψL + ψ†
RψR + ψ†PLPRψ − ψ†PRPLψ

)
= −κ

(
− ψ†

LψL + ψ†
RψR

)

(2.2)

Where PL, PR are the left- and right-handed projectors. The above result hints the fact
that κ will quantify an energy shift and a difference in number densities between left
and right handed fermions. To see this, consider reducing the model to the Dirac free
lagrangian in addition to κ-term:

Lκ = ψ(iγµ∂µ −m)ψ − κψγ0γ5ψ (2.3)
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Leading to the equation of motion for ψ:

∂Lκ
∂ψ

= ∂µ

(
∂Lκ

∂(∂µψ)

)
(iγµ∂µ −m)ψ − κγ0γ5ψ = 0(
iγµ∂µ −m− κγ0γ5

)
ψ = 0

(2.4)

By assuming plane waves solutions (i.e., working in momentum space)

ψ(x) = u(p)e−ip·x (2.5)

We observe that ∂µ → −ipµ over the solution in Eq. 2.5. As such, the expression
iγµ∂µ → γµpµ ≡ /p. With this simplification, Eq. 2.4 becomes(

/p−m− κγ0γ5
)
u(p) = 0 (2.6)

Because of commutation rules, we can project the entire equation to the left or to the
right. Starting with a right-projection:

0 =

(
/p−m− κγ0γ5

)
PRu(p)

=

(
/p−m− κγ0γ5

)
uR(p)

=

(
/p−m− κγ0

)
uR(p)

(2.7)

The operator in parenthesis is equal to γ0(E − κ)− γ · p−m. Multiply the equation in
Eq. 2.7 by γ0(E − κ)− γ · p+m. We find that six out of the nine terms vanish, and we
are left with

0 =

(
(E − κ)2 + (γ · p)2 −m2

)
uR(p)

=

(
(E − κ)2 − p2 −m2

)
uR(p)

(2.8)

Because this has to hold for any uR(p), it follows that (E − κ)2 − p2 −m2 = 0, in other
words:

ER =
√

p2 +m2 + κ (2.9)

And equivalent analysis on the left-handed version of the modified Dirac equation yields

EL =
√

p2 +m2 − κ (2.10)

This is the first effect of the κ-term: It modifies the energies of the left- and right-handed
fermions in the theory. As such, we identify κ as the (chiral) chemical potential of
the theory.
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Before moving on, it is relevant to compute the chiral number density in a Lκ theory:
n5 ≡ (nL − nL)− (nR − nR). Each term involves a Fermi-Dirac distribution:

f(p) =
1

1 + exp
(
E−µ
T

) (2.11)

With zero total chemical potential µ (that is, the theory has an equal amount of fermions
and antifermions), we don’t need to worry about the subtleties of an antiparticle Fermi-
Dirac distribution. Still, we should note that a right-handed antifermion’s energy gets
shifted by −κ (compared to the right-handed fermion’s shift of +κ). In the massless
limit:

n5 = nL − nL − nR + nR

=

ˆ
d3p/(2π)3

e(p−κ)/T + 1
−
ˆ

d3p/(2π)3

e(p+κ)/T + 1
−
ˆ

d3p/(2π)3

e(p+κ)/T + 1
+

ˆ
d3p/(2π)3

e(p−κ)/T + 1

=
kT 2

3
, m = 0, κ≪ T

(2.12)

The evaluation of these integrals is a non-trivial problem. For the interested reader, a
full computation with approximations can be found in Appendix A. With Eq. 2.12 in
mind, we are ready to summarize the effects of the κ-term on a Lκ theory (see Eq. 2.3).
The effects of the −κψγ0γ5ψ term include:

• Handedness-depended energy shifts.

• Imbalance in the number of left handed and right handed particles in the universe.

From now on, it is assumed that the LSCDM is being used in the massless (m = 0) case.

2.2 Scalar characterization

To study SCDM in a cosmological context, it is useful to transform the theory into a scalar
theory by means of an auxiliary field, here ∆, through a Hubbard-Stratonovich trans-
formation [Hub59, Str57]. We start by realizing the following (Euclidean path integral)
identity:

1 =

ˆ
D∆exp

(
−
ˆ
d4x

[
1

2
M∆− 1

M
ψψ

]2)
(2.13)

Where ∆ is an auxiliary scalar field. Following the convention of [LC24], naming this
field ∆ makes physical sense: When the scalar field is at zero, ∆ = 0, we get no fermion-
antifermion pairs. This is analogous to the gap energy in BCS theory.

Consider the Euclidean path integral for LSCDM:

LE
SCDM = ψ(γµ∂µ +m)ψ + κψγ0γ5ψ − (ψψ)2

M2
(2.14)

ZSCDM =

ˆ
DψDψ exp

(
−
ˆ
d4xE

[
ψ(γµ∂µ +m)ψ + κψγ0γ5ψ − (ψψ)2

M2

])
(2.15)
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By inserting (Eq. 2.13) into the path integral (Eq. 2.15) of the SCDM theory, we get a
Euclidean path integral over the fermionic fields and the auxiliary scalar field:

ZE =

ˆ
D∆DψDψ exp

(
−
ˆ
d4xE

[
ψ(γµ∂µ +m)ψ + κψγ0γ5ψ − (ψψ)2

M2

+

[
1

2
M∆− 1

M
ψψ

]2 ])
=

ˆ
D∆DψDψ exp

(
−
ˆ
d4xE

[
ψ(γµ∂µ +m)ψ + κψγ0γ5ψ − (ψψ)2

M2

+
1

4
M2∆2 −∆ψψ +

1

M2
(ψψ)2

])
=

ˆ
D∆DψDψ exp

(
−
ˆ
d4xE

[
ψ(γµ∂µ +m−∆− κγ0γ5)ψ +

1

4
M2∆2

])
(2.16)

This last expression tells us that we can integrate out the fermionic field using the exact
functional integral/determinant:

ˆ
DψDψ exp

(
−
ˆ
d4xψG−1ψ

)
= det(G−1)−1 (2.17)

This means that

ZE =

ˆ
D∆exp

(
−
ˆ
d4xE

[
1

4
M2∆2 − ln det(G−1)

])
(2.18)

Where
G−1 = γµ∂µ +m−∆− κγ0γ5 (2.19)

Giving:

L∆ = −1

4
M2∆2 +

ˆ
d4k

(2π)4
lnU+U− (2.20)

Where U± = ∆2 − ω2 + (k ± κ)2, ∆ −m → ∆, and G−1 = −γµkµ + ∆ −m − κγ0γ5 in
momentum space. To leading order, the computation of the energy-momentum integral
leads to the effective potential [LC24]:

Veff(∆) =
1

4
M2(∆ +m)2 +

∆4

32π2

(
1 + 4 ln

∆

ΛUV

)
− κ2∆2

4π2

(
1− 2 ln

∆

ΛUV

)
+ V0 (2.21)

Where the model parameters must follow the hierarchy

M ≳ ΛUV ≳ κ (2.22)

for self-consistency [LC24]. When the parameters are much larger than the local values
of ∆ (an assumption that will happen, as we will work with families of parameters where
M,ΛUV, κ are of order TeV and ∆ is of order eV), the minimum of the potential can be
approximated by

∆0 ≈ ΛUV exp

(
−π

2

2

(
M

κ

)2
)
. (2.23)

The role of V0 in the potential (Eq. 2.21) is to produce a lift that, although it won’t make
a difference from a particle physics point of view, it will avoid SCDM from becoming
dark energy in a cosmological context.
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Figure 2.1: Scalar effective potential. Plot of the scalar effective potential
in Eq. 2.21. The approximation to the location of the minimum, Eq. 2.23, has
an error of 2.261× 10−6% compared to a numerically-found minimum location.

A fermionic thermal correction can be computed for the theory. The Euclidean four-
momentum kµ = (ω,k) gets promoted with matsubara modes of the fermionic kind:

ω → ωn = π(2n+1)
β

= Tπ(2n+1). With the energy integral becoming an infinite sum over
the discrete modes, the thermal one loop correction follows:

L1-loop
thermal =

ˆ
d3k

(2π)3
T

∞∑
n=−∞

ln
1

T 4
Un+Un− (2.24)

Where Un± = ∆2 + ω2
n + (k ± κ)2, and T stands for the temperature of the dark sector.

This give an effective thermal potential contribution of [LC24]:

V 1-loop
thermal = −2T 4

π2

(
I2(∆/T ) +

κ2

T 2
I0(∆/T )

)
(2.25)

Where I0, I2 are instances of thermal integrals:

In(x) =

ˆ ∞

0

ds sn ln(1 + exp
(
−
√
s2 + x2

)
). (2.26)
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Figure 2.2: 1-loop thermal corrections. Plots of the 1-loop thermal correc-
tion as given in Eq. 2.25 for various temperatures with κ = 0.56 TeV.
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For x ̸= 0, the thermal integrals in Eq. 2.26 must be evaluated numerically. Figure
2.3 shows the shape of the total potential (effective plus 1-loop thermal corrections) at
different temperatures. Note that the thermal corrections will push the location of the
total potential (zero temperature effective plus thermal correction) towards ∆ = 0. It
is not until the temperature drops enough for the thermal correction to be negligible
compared to the effective potential that the approximation in Eq. 2.23 becomes valid.
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Figure 2.3: Total potential. Plots of Vtotal = Veff + V 1-loop
thermal at various tem-

peratures. For these plots, κ = 0.56 TeV, M = 1.2 TeV, ΛUV = 1.1 TeV.

As the temperature of the dark sector drops, there will be a critical temperature TC at
which the potential minimum no longer occurs at ∆ = 0. This corresponds to a 2nd order
phase transition in the model, as the minimum shifts away from the origin in a smooth,
continuous manner.

To find the critical temperature, we identify that the problem has an associated gap
equation

∂V

∂∆
= 0 (2.27)

With boundary condition
∆(T = TC) = 0 (2.28)

Where we note that this analysis takes T as a quantity that increases. In other words,
TC is the temperature at which ∆ = 0 as we heat up the dark sector. By assuming a
small x in In(x), one can approximate the solution to the gap equation [LC24] with:

TC = ∆0
exp (γe)

π
(2.29)

Where γe ≈ 0.577216 is the Euler-Mascheroni constant.
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2.3 Cosmological Evolution

To derive the thermal evolution of the model, we employ the following characterizations
of pressure and energy density:

p = −V (2.30)

ρ = T
dp

dT
− p (2.31)

Where Eq. 2.30 comes from taking the static limit in the classical field definition of
pressure:

p =
1

2
(∆̇)2 − V (∆) (2.32)

And Eq. 2.31 can be derived from the equations of energy density and pressure in
momentum space [Dod03]:

ρ = g

ˆ
d3p

(2π)2
E(p)f(x, p) (2.33)

P = g

ˆ
d3p

(2π)3
p2

3E(p)
f(x, p) (2.34)

Where g quantifies the number of internal degrees of freedom and f is the distribution
function for the species. To go from these two equations to Eq. 2.31, we need to assume
that the distribution functions depend only on E/T . We will further take the massless
limit. Observing that

E(p) =
√
p2 +m2 → p (2.35)

We perform a change of variables into q = p/T . Then

E(q) = Tq, (2.36)

and the differential transforms as:

d3p = T 3d3q. (2.37)

In terms of q, we see that ρ, P take the forms:

ρ = g

ˆ
d3q

(2π)2
T 4qf(q) (2.38)

P = g

ˆ
d3q

(2π)3
T 4 q

3
f(q) (2.39)

From which we immediately conclude that

ρ = 3P, (2.40)

and that P as given in Eq. 2.39 satisfies:

dP

dT
= 4g

ˆ
d3q

(2π)3
T 3 q

3
f(q)

=
4

T
P.

(2.41)
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By noting that 4P = 3P + P = ρ+ P , we conclude that 2.41 is equivalent to 2.31.

At early times, before the phase transition (T > TC), ∆ = 0 statically, as the minimum
of the total potential stays at the origin at these temperatures (hence the aforementioned
approximation ∆̇ = 0). As such, the effective potential will have no contribution to p∆,
and the thermal integrals will have an exact analytic solution, yielding:

p∆ =
2T 4

π2

(
I2(0) +

κ2

T 2
I0(0)

)
=

2T 4

π2

(
7π4

360
+
κ2

T 2

π2

12

)
=

7π2T 4

180
+
T 2κ2

6

(2.42)

The energy density ρ∆ follows from it:

ρ∆ = T
dp∆
dT

− p∆

= T
d

dT

(
7π2T 4

180
+
T 2κ2

6

)
− 7π2T 4

180
− T 2κ2

6

=
7π2T 4

60
+
T 2κ2

6

(2.43)

By computing the equation of state w∆:

w∆ =
p∆
ρ∆

=
7π2T 2 + 30κ2

21π2T 2 + 30κ2

(2.44)

We observe that w∆ has 2 characteristic values. At high T , in particular T ≫ κ, w∆ ∼
7π2T 2

21π2T 2 = 1/3. Once the dark sector cools down and T ≲ κ, the other terms dominate and

w∆ ∼ 30κ2

30κ2
= 1. This transition is plotted on Fig. 2.5.
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Figure 2.4: Evolution of the equation of state w∆ at early times.

By assuming that the dark sector was in thermal equilibrium with the standard model
(SM) at early times, as well as adiabaticity in the thermal evolution:

s =
ρ∆ + p∆
T∆

∝ (z + 1)3, (2.45)
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we find that

T (z + 1) =

3
√
5

(
3
√
2
(√

7
√

567π2C2(z + 1)6 + 20κ6 + 63πC(z + 1)3
)2/3

− 2 3
√
35κ2

)
142/3π 3

√√
7
√
567π2C2(z + 1)6 + 20κ6 + 63πC(z + 1)3

(2.46)
Where C is a constant of proportionality to be found by equating the temperature of the
SM at early times with the that of the standard model. In particular:

C =
1

(1 + z)3

(
7

45
π2T 3 +

1

3
Tκ2

)
(2.47)
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Figure 2.5: Redshift dependence on the temperature of the dark sector.
Plot of Eq. 2.46 with C computed using the temperature of the SM at redshift
z+1 = 1020 (∼ 2.34822×1016 eV). Increasing the SM matching temperature has
negligible effects on the figure. Observe that at high redshift (T > κ), T ∝ Z as
expected from a particle with w = 1/3. Once T < κ, T ∝ Z3, which is expected
from a particle with w = 1.

Once T∆ drops to TC , equation 2.44 stops being valid as ∆ starts rolling away from the
origin. As the second order phase transition occurs, the evolution of w∆ to today’s value
is approximately given by [LC24]

(1 + z)3 ∼ w0(1 + w∆)

w∆(1 + w0)
exp

(
1

w0

− 1

w∆

)
(2.48)

Where w0 is the value of w∆ today.
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Figure 2.6: Equation of state w∆ at late times. Plot of Eq. 2.48 with
w0 = 0.0115038, the corresponding value for a model with κ = 0.56 TeV, M = 1.2
TeV, and ΛUV = 1.1 TeV.

Although there is a one-to-one relation between the critical redshift (1 + z)C and w0, if
we want to compute κ for a given curve of the form 2.48, and needs to set a value for TC
(or vice versa, set a value of κ and find TC).
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Figure 2.7: Relation between w0 and the time of phase transition, zc+1.
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Chapter 3

Cosmological Impacts of SCDM

3.1 CLASS and Its Modifications

Equation 2.48 quantifies the evolution of a massless SCDM theory at the cosmological
level, as any impacts on the evolution of cosmological perturbations depend on the value
of w∆ at any time.

To investigate how a universe dominated by superconducting dark matter would differ
from one governed by cold dark matter, we employed the Cosmic Linear Anisotropy
Solving System (CLASS) code [Les11, BLT11]. CLASS is a Boltzmann solver capable
of modeling cosmological background evolution and perturbations. The rest of this sec-
tion will describe, in detail, how SCDM was implemented to work within the CLASS code.

The already existing CLASS particle species background fld (background fluid) works
by, superficially, specifying the value of w(a) and dw

da
at any time in the time domain of

the simulation.

Given that equation 2.48 defines an implicit dependence between w and z, solving for
w requires numerical root-finding methods. This can be computationally intensive over
multiple values of z (equivalently, scale factor values a). To improve the workflow of
CLASS, we precomputed w(a) for different values of w0 in the time domain bounded
below by a = 10−14:

10−14 ≤ a ≤ 1 ⇔ 1014 ≥ z + 1 ≥ 1 . (3.1)

The root method of scipy [VGS20] is able to solve for w with high precision. It is worth
noting it requires a close initial guess in order to work. We recommend updating the
initial guess to w0 every time the value of w0 is changed.

The code implementing this solver is shown in Appendix B. This code outputs data sets
in the way our modified CLASS code needs them. A total of four data files are exported:

1. Scale factor values.

A single-column csv file is exported containing the discretized scale factor values
used to compute the remaining three data sets. Note that this is the corresponding
data set used to interpolate in SCDM CLASS code.
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2. w(a) values.

Given a smallest and largest w0 values, the python code will create a linear space
of w0 values within them. For each value of w0 (here representing a column in the
dataset), the implicit equation 2.48 is solved for w for scale factor values in the
domain.

3. w′(a) ≡ dw
da

values.

Although there is no explicit equation relating w to a, one can compute an implicit
integral and use the value found in the previous step to exactly compute dw

da
at any

value of a.
dw

da
=

−3w2(1 + w)

a
(3.2)

4. Continuity equation integrals.

Due to the lack of explicit parametric descriptions for w(a), we decided to precom-
pute integrals of the form ˆ 1

ai

3(1 + w)

a
da (3.3)

For ai ∈ [10−14, 1]. These integral comes from solving the continuity equation,
and CLASS uses the values in this data set to compute the evolution of ρscdm, for
example.

We note that scipy’s quad numerical method suffices, with increasing precision
and velocity when recasting the integral to one in terms of d(ln a). An essential
improvement when computing this integral comes in the form of interpolators. The
precomputed w(a) data can be used to define interpolators and avoid solving for
the roots of Eq. 2.48.

CLASS processes the four datasets before starting background cosmological computa-
tions. A value of w0 is supplied in the standard .ini file along with the rest of the
family of cosmological parameters. Based on the supplied value of w0, CLASS finds the
best suitable pair of neighboring columns in the datasets to create a new triplet of one
dimensional data sets that best match the supplied w0. The two neighboring columns
are weighted through linear interpolation.

Once CLASS interpolates the data sets to create w0-specific data, it continuous running
as in the original code. Beyond this data processing procedures, the original CLASS
code differs to our modified SCDM CLASS code in that the background w fld() func-
tion within background.c, where the information for the fluid is computed, now works
using interpolators making use of the previosly generated data arrays. Data arrays are
interpolated using the CLASS function array interpolate linear. This function was
adequate for two reasons:

1. Linear interpolation is sufficient for the current problem.

2. It keeps track of the previously used interpolation index, accelerating substantially
the process of interpolation.
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An ideal SCDM computation would use that Ωcdm = 0 (that is, a universe with no cold
dark matter). Still, due to the manner in which CLASS handles the cosmological syn-
chronous gauge, a small amount of CDM must be present. In the following sections, any
SCDM computation was carried out in a universe with Ωcdm = 10−10.

To compare the observables in a SCDM universe with that of a CDM universe in a
sensible manner, we assume that ρscdm = ρcdm today. In practice, we achieve this by
setting Ωscdm,0, the density parameter for SCDM today, to a value larger than that of
Ωcdm in its respective case. In particular,

Ωscdm,0 = 0.267395, (3.4)

a value that is 0.893% larger than the one used for CDM universes. As little as w0 can be,
the fact that it is nonzero drastically changes the way the universe behaves throughout
its evolution.

The last assumption we make is that SCDM simulations are computed using a larger
value of N ur (the effective number of relativistic species) compared to the CDM universe
value of 3.044. The new value is set by the condition that matter-radiation equality
occurs at at zeq ∼ 3405.75. We note that SCDM universes using N ur=3.044 observe, in
general, an earlier matter-radiation equality time. Figure 3.1 shows the relation between
the size of w0 and the required N ur.
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Figure 3.1: Required N ur at different values of w0. The larger w0 is, the
larger N ur needs to be in order to get zeq ∼ 3405.75 in a SCDM simulation.

By having simulations at equal zeq times, we are able to properly compared observables
such as the matter power spectrum and CMB spectra between SCDM and CDM universes.
CDM observables and quantities are computed with a standard ΛCDM universe using
Planck’s 2018 best fit parameters [Pla20b] parameters. SCDM simulations share the same
parameters, except for the aforementioned modification to Ωcdm and N ur.
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3.2 Background Quantities

The first effects of SCDM in the universe can be understood by studying the evolution of
its energy density, ρscdm. Imposing the condition ρcdm = ρscdm today, the faster dilution
of SCDM energy density implies that ρscdm > ρcdm at earlier times. This behavior is
illustrated in Fig. 3.2.
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Figure 3.2: Percentage difference in the evolution of the energy density
of dark matter. SCDM energy density is compared to CDM energy density for
different values of w0. The CDM energy density was computed in a standard
ΛCDM universe.

Since SCDM has a higher energy density in the past, the Hubble rate (H) in an SCDM
universe is expected to be higher than in a CDM universe at all times. The percentage
differences for H(z) in a SCDM universe and a CDM universe is shown in figure 3.3.

10 2100102104106108101010121014

Redshift z

0.1

0.0

0.1

0.2

0.3

0.4

0.5

%
 d

iff
er

en
ce

w0=0.0005, N_ur = 3.1218
w0=0.0004, N_ur = 3.105
w0=0.0003, N_ur = 3.09
w0=0.0002, N_ur = 3.075
w0=0.0001, N_ur = 3.059

Figure 3.3: Percentage difference in the evolution of the Hubble rate
between a universe with SCDM and one with CDM. The Hubble rate of
SCDM dominated universes is compared to the Hubble rate in a CDM dominated
universe. The CDM Hubble rate was computed in a standard ΛCDM universe.
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As expected, a larger energy density ρscdm yielded a larger Hubble rate at early times for
the selected values of w0. Still, we observe that at late times SCDM universes have a
smaller Hubble rate than the reference CDM universe. This is one of the characteristic
features of SCDM.

3.3 Matter Power Spectrum

Figure 3.4 compares the matter power spectrum of an SCDM universe with that of a
CDM universe, using parameters from Planck 2018’s best fit. At large scales (k smaller
than 10−3, or scales larger than ∼ 6000 Mpc), the SCDM model predicts ∼ 0.15% more
structure, with little sensitivity to the value of w0.
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Figure 3.4: Percentage difference in the Matter Power Spectrum be-
tween a universe with SCDM and one with CDM. The matter power
spectrum today (z = 0) in SCDM dominated universes is compared to the matter
power spectrum in a CDM dominated universe.

At smaller scales (k > 10−3), the predicted increase in structure is significantly more
sensitive to the value of w0.
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3.4 Impacts on the CMB

The effects of SCDM on the CMB are shown in Figure 3.5. Overall, SCDM consistently
predicts greater Temperature-Temperature anisotropies than CDM. Additionally, regard-
less of the value of w0, SCDM tends to predict enhanced anisotropy at certain multipole
moments ℓ, while at other ℓ values, it predicts slightly suppressed anisotropy — though
still greater than that predicted by CDM.
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Figure 3.5: Percentage difference in the TT CMB anisotropy spectrum
between a universe with SCDM and one with CDM.

Figure 3.7 shows the TT anisotropy spectra for SCDM residuals compared to the binned
Planck 2018 data [Pla20a]. Visually, the SCDM curves fall within the Planck error bars
to a similar degree as the best-fit CDM curve: sometimes passing through the error
bars, sometimes not. Similarly, SCDM gets closer to the observations compared to CDM
at certain multiple values, and vice versa. At this stage, we do have no measurement
of the agreement, but the overall visual consistency, compared to a CDM universe, is
comparable.
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Figure 3.6: TT CMB anisotropy spectrum for SCDM universes, the
best-fit ΛCDM universe, and the observations from Planck 2018.
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Figure 3.7: Residual comparison between SCDM universes and obser-
vations, in relation to the best-fit ΛCDM universe.
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Chapter 4

Conclusion and Future Work

Superconducting Dark Matter (SCDM) provides a physically motivated framework to
question the assumption that wdm = 0 in a conservative manner, allowing for a small but
nonzero range, 0 < wscdm < 0.1. This approach is advantageous compared to studies that
impose a dark matter equation of state without invoking or developing an underlying
physical theory.

After reviewing the field theory of SCDM, we derived the equations governing its evolution
and cosmological behavior. A distinguishing feature of this model is that, although w re-
mains small, it is not constant, instead decaying dynamically to its present-day value, w0.

This time-dependent behavior leads to a rich evolution of the SCDM energy density,
ρscdm. We confirmed this evolution by modeling a universe dominated by SCDM in the
Cosmic Linear Anisotropy Solving System (CLASS). Our predictions for the evolution
of the Hubble parameter were also validated through these initial computational experi-
ments.

After computing the matter power spectra and CMB TT anisotropy spectra for SCDM
universes, we observed that SCDM consistently predicts more matter structure as well
as temperature anisotropies. A first pass analysis to compare Planck 2018 data with
the SCDM model showed that w0 can stay relatively away from 0 and still fall within
acceptable bounds.

Therefore, we conclude that relaxing the assumption that dark matter must satisfy
wdm = 0 at all times is a viable approach. This perspective opens the door to proposing
novel models, such as SCDM, aimed at probing the fundamental nature of dark matter.

Our next step will involve running Monte Carlo Markov Chain (MCMC) analyses to
quantify the degree of compatibility between the model and observations of our universe,
as well as to determine the most favorable value of w0.

Thus far, our analysis has been bounded below by a time scale of a = 10−14, meaning
that the early evolution of the model we derived is not captured in our simulations when
w0 is very small. This limitation raises two questions: How would our current predictions
change if the wscdm = 1 → w ≪ 1 phase transition occurred within this window? And
what impact might the model have on the very early universe?
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Appendix A: Evaluation of
Fermi-Dirac integrals

n5 = nL − nL − nR + nR

=

ˆ
d3p/(2π)3

e(p−κ)/T + 1
−
ˆ

d3p/(2π)3

e(p+κ)/T + 1
−
ˆ

d3p/(2π)3

e(p+κ)/T + 1
+

ˆ
d3p/(2π)3

e(p−κ)/T + 1

=

ˆ
p2dp/2π2

e(p−κ)/T + 1
−
ˆ

p2dp/2π2

e(p+κ)/T + 1
−
ˆ

p2dp/2π2

e(p+κ)/T + 1
+

ˆ
p2dp/2π2

e(p−κ)/T + 1

=
1

π2

ˆ
p2dp

e(p−κ)/T + 1
− 1

π2

ˆ
p2dp

e(p+κ)/T + 1

Let u = p/T and r = κ/T . Then

=
1

π2

ˆ
T 2u2Tdu

eu+r + 1
− 1

π2

ˆ
T 2u2Tdu

eu−r + 1

=
T 3

π2

ˆ
u2

eu+r + 1
− u2

eu−r + 1
du

To simplify the integrand, we can perform a linear approximation on the denominators.
Let

f(u) =
1

eu + 1

Then

1

eu±r + 1
≈ f(u)± rf ′(u)

=
1∓ eu(r ∓ 1)

(1 + eu)2

Therefore the integrand can be approximated by:

u2

eu−r + 1
− u2

eu+r + 1
≈ u2

(
2r

eu

(1 + eu)2

)
So

n5 =
2rT 3

π2

ˆ ∞

0

u2eu

(1 + eu)2
du

=
2T 3

π2

κ

T
· π

2

6

=
T 2κ

3
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Where
´∞
0

u2eu

(1+eu)2
du is an computable integral by many standard software. An analytic

solution without additional assistance would identify the connection between the integral
and integrals of the form

´∞
0
xe−nxdx for n ∈ Z+.
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Appendix B: SCDM Data
Generation in Python

The following python code is used to generate the 4 .csv files that CLASS expects to
read when runs. The output console message of this program states which lines of code
should be modified in CLASS for it to be able to interpret the data files correctly. The
output files should be stored in /SCDM CLASS Directory/external/SCDM/.

1 # # # # # # # # # # # # # # # # # # # # # #

2 # Fernando Garcia Cortez #

3 # University of New Mexico #

4 # Spring 2025 #

5 # # # # # # # # # # # # # # # # # # # # # #

6

7 # This code generates datasets to be used to include an SCDM fluid in

CLASS.

8

9 # scipy quad might complain. It shouldn ’t be much of a problem.

10 # Read output console message for necessary CLASS modifications

11

12 import numpy as np

13 import matplotlib.pyplot as plt

14 from scipy.optimize import root

15 import time

16 from scipy.integrate import quad

17 from scipy.interpolate import interp1d

18 import pandas as pd

19

20 # Implicit function in root -solving form

21 def equation_of_state(w, a, C):

22 lhs = a**3

23 rhs = (w * (1 + C)) / (C * (1 + w)) * np.exp ((1/w) - (1/C))

24 return lhs - rhs

25

26 # Root finding function

27 def solve_for_w(a, C,InitialGuess):

28 result = root(equation_of_state , InitialGuess , args=(a, C), method=

’hybr’, tol=1e-30)

29 if result.x[0] > 1:

30 return 1 # Case not needed for small enough w0

31 else:

32 return round(result.x[0] ,10) # Extract root. Round to uniform

size

33

34 # Note for extreme values of w0: ^^

35 # w0 is too small and you have great (a) resolution , you need a decent

amount
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36 # of sig. figs. in the above rounding procedure. Otherwise the data

will look like

37 # A step/staircase function!

38

39 # Integral with respect to d(log(a))

40 def integrate_function_interpolatedlog(f,lower_bound , interp):

41 IntegralResult , IntegralError = quad(lambda x: f(x, interp), np.log

(lower_bound), 0)

42 return IntegralResult

43

44 # Integrand in log(a) form

45 def function_to_integrate_interpolatedlog(loga ,interp):

46 return 3*(1+ interp(np.exp(loga)))

47

48 # Resolution in the time domain:

49 a_resolution = 3000

50

51 # Resolution in discretization of values of w0

52 w0_resolution = 100

53

54 a_values = np.logspace (-14, 0, a_resolution) # Corresponding to the

time domain in CLASS

55

56 np.savetxt("temp_scalefactors.csv", a_values.T, delimiter=",", fmt="

%.16f")

57

58 smallest = 0.0001

59 largest = 0.0005

60

61 w0_values = np.linspace(smallest , largest , w0_resolution)

62 # ^ ^ Biggest w0 in the dataset

63 # \ Smallest w0 in the dataset

64

65 equations_of_state = []

66 derivatives = []

67 interpolators = []

68

69 time1 = time.time()

70

71 # Compute w(a) and w ’(a) for given w0, and a in the domain E-14 to 1

72 for WW in w0_values:

73 w_values = []

74 der_values = []

75 for AA in a_values:

76 temp_w=solve_for_w(AA ,WW ,WW)

77 w_values.append(temp_w)

78 if temp_w == 1:

79 der_values.append (0)

80 else:

81 der_values.append (-3* temp_w*temp_w *(1+ temp_w)/AA)

82 equations_of_state.append(w_values)

83 derivatives.append(der_values)

84 interpolators.append(interp1d(a_values , w_values , kind=’linear ’))

85 time2 = time.time()

86

87 print("Done computing w, w’, and storing interpolators")

88 print("{:.2f} seconds".format(time2 -time1))

89
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90 np.savetxt("w.csv", np.array(equations_of_state).T, delimiter=",", fmt=

"%.6f")

91 np.savetxt("w_derivative.csv", np.array(derivatives).T, delimiter=",",

fmt="%.6f")

92

93 print("Exported CSV file with w values and CSV file with w ’(a) values."

)

94

95 # Now that we computed w(a) and created interpolators ,

96 # it is straightforward to compute the integral

97

98 integrals = []

99

100 interpolator_counter = 0

101 time3 = time.time()

102 for WW in w0_values:

103 integral_values = []

104 for AA in a_values:

105 integral_values.append(integrate_function_interpolatedlog(

function_to_integrate_interpolatedlog ,

106 AA ,

107

interpolators[interpolator_counter]

108 )

109 )

110 integrals.append(integral_values)

111 interpolator_counter = interpolator_counter + 1

112 time4 = time.time()

113

114 print("Done computing integrals")

115 print("{:.2f} seconds".format(time4 -time3))

116

117 np.savetxt("integrals.csv", np.array(integrals).T, delimiter=",", fmt="

%.6f")

118 #np.savetxt (" integrals.dat", np.array(integrals).T, delimiter =" ",

fmt ="%.6f")

119

120

121 # Find longest line length in all the files

122 def longest_line_length(filepath):

123 with open(filepath , ’r’, encoding=’utf -8’) as f:

124 return max(len(line.rstrip(’\n’)) for line in f)

125

126 longest_line_length = max([ longest_line_length("w.csv"),

127 longest_line_length("w_derivative.csv"),

128 longest_line_length("integrals.csv")])

129

130 # Output console message

131 print("Integrals exported as CSV")

132 print("Modify the SCDM CLASS code to work with")

133 print("")

134 print("")

135 print("#define N "+str(w0_resolution))

136 print("#define ROWS "+str(a_resolution))

137 print("#define LINE_LENGTH "+str(longest_line_length)+" (at least !)")

138 print("")

139 print("double data_upper_bound = "+str(largest)+";")

140 print("double data_lower_bound = "+str(smallest)+";")
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141 print("")

142 print("")

143 print("these modifications goe inside background.c")
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