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Abstract

Primordial Black Holes (PBHs) are objects that could have formed in the early uni-

verse as a result of density fluctuations that collapsed under their own gravity. Their

mass can be (much) smaller than the mass of stellar black holes by many orders of

magnitude and is greatly influenced by the cosmological epoch in which they formed.

This thesis investigates the formation of PBHs and their growth due to accretion when

the universe was a tiny fraction of a second old. By analyzing equations that describe

these phenomena, we aim to connect the early cosmological history to the resulting

mass spectrum of PBHs.

1 Introduction

PBHs behave very differently from those black holes most common in our universe now.

PBHs form when regions of the early universe experience density fluctuations large enough

to overcome pressure and grow gravitationally [1]. These fluctuations, described by the den-

sity contrast δ = δρ/ρ, where ρ is the average energy density of the universe [2]. Various

theoretical mechanisms have been proposed to explain how PBHs could form shortly after

the Big Bang. An interesting formation mechanism involves cosmological phase transitions,

during which the universe underwent a significant change in its equation of state, briefly low-

ering the pressure support in the plasma. This change could have heightened the likelihood

of gravitational collapse in overdense regions.

The main mechanism that we consider here involves primordial density fluctuations.

These fluctuations can be traced back to quantum fluctuations during cosmic inflation that

were stretched to cosmological scales. Regions with higher than the average density could
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decouple from the cosmic expansion and undergo a gravitational collapse if the density con-

trast δ exceeds a critical threshold δc, most commonly around δc ∼ 0.1 [2]. In a radiation-

dominated (RD) era, radiation pressure prevents the collapse of density fluctuations at sub-

horizon scales. As a result, only fluctuations whose physical size is on the scale of the cosmic

horizon could collapse under their own gravity (if their amplitude is large enough). However,

during a matter-dominated epoch, the absence of pressure allows fluctuations at scales much

smaller than the horizon size to collapse.

Accretion also plays an important role in the evolution of PBHs following their initial

formation. PBHs can grow through Bondi-Hoyle accretion where matter falls spherically

inward. On the other hand, in the Eddington-limited accretion a rotating disk forms around

the PBH, thereby limiting its growth rate. The conditions for accretion depend on many

factors, such as the density of the surrounding medium, the epoch in which the black hole

is accreting, and the mass of the PBH [3]. These effects have a great impact on the mass

spectrum of PBHs formed in different cosmological epochs.

This work focuses on understanding the mass spectrum of PBHs that formed during an

early matter-dominated (EMD) era when the universe was a fraction of a second old By

deriving and analyzing equations that govern the evolution of the PBHs, we examine how

the collapse of density fluctuations followed by accretion from the surrounding influenced

PBH formation and growth. Of particular interest to us is the 1017 − 1022 g mass range

where PBHs can constitute the entirety of dark matter (DM) in the universe [4].

2 Background

In the “standard cosmological history”, The early universe underwent different eras that

were defined by the dominant form of energy during the era. In the “standard cosmological

history”, the universe entered a RD phase shortly after the end of inflation, meaning its

energy density was primarily in the form of relativistic particles with an equation of state

w = 1/3. However, important classes of particle physics models of the early universe predict

one (or more) periods of EMD, where the energy density was temporarily dominated by non-

relativistic matter, such as coherent oscillations of massive scalar fields or long lived heavy

particles [5]. These components behave like pressureless matter (w = 0) and eventually

decay to establish a RD universe. Such a scenario is fully consistent with observations as

long as the EMD epoch ends within the first second after Big Bang. The best observational

probes of the early universe, namely the cosmic microwave background (CMB) and big bang

nulceosyntheis (BBN), inform us about the state of the universe at about 400,000 years and

one second after Big Bang respectively. However, currently, we do not have any observational
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Figure 1: Comparison of the standard thermal history of the universe (left) with an alterna-
tive scenario (right) including an EMD phase. (Adapted from [5])

probes of the universe prior to one second.

Fig. 1 compares the standard thermal history of the universe with an alternative scenario

involving EMD. Oscillations of a scalar field (for example, modulus fields from string theory)

that behave like matter can dominate the energy density of the universe and then decay and

reheat the universe back into RD before the onset of BBN.

The absence of pressure during EMD has important implications for the formation and

evolution of PBHs. First, it leads to the growth of subhorizon density fluctuations in time.

As a result, fluctuations whose initial amplitude is very small δ can reach the threshold δc

during EMD and collapse to form PBHs. Second, for the same reason, PBHs can efficiently

accrete from their surrounding upon formation, and hence their initial mass can grow by a

significant factor. The Bondi-Hoyle accretion is especially efficient and could increase PBH

masses by a few orders of magnitude [6]. After reheating, when the universe transitions

back to RD, accretion is must less effective [3]. The maximum mass a PBH can reach is

therefore largely determined by how long it accretes during the EMD phase.

Unlike astrophysical black holes, the mass of PBHs that are around today spans a very
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Figure 2: Observational constraints on the fraction of dark matter in the form of PBHs
across a wide range of masses. The shaded regions are excluded by various probes (e.g.,
microlensing, CMB, gamma-ray background), but a window between 1017 and 1022 g remains
unconstrained. (Adapted from [7])

broad range from 10−18M⊙ to masses much larger than M⊙ (see Fig. 2) [7]. Here, M⊙ ≈
2 × 1033 g denotes the solar mass). PBHs with masses below 1015 g have evaporated via

Hawking radiation before the present time. ForMPBH ≃ 1015−1017 g, the abundance of PBHs

is tightly constrained by the emission of gamma-rays from the Hawking radiation [7]. For

masses above 1022 g, the PBH abundance is subject to various astrophysical constraints [7].

There exists an interesting mass window 1017 − 1022 g within which the PBHs can account

for the entirety of DM in the universe [4].

3 Theoretical Framework

3.1 Collapse Conditions and Thresholds

The formation of a PBH begins when a region of the early universe becomes dense enough

for gravity to overcome pressure and cause collapse [2]. The likelihood of this happening

depends on the amplitude of the density contrast, defined as δ = δρ
ρ
, which is a measure of

the overdensity in a region to the average energy density of the universe at the time [2]. If

δ exceeds a critical threshold, denoted δc, the region will collapse [2].
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Figure 3 illustrates how this difference in thresholds affect PBH formation. Because

Gaussian distribution of the amplitude of primordial fluctuations drops off steeply, a small

shift in δc can lead to orders of magnitude differences in the probability of collapse.

Figure 3: Gaussian distributions of density perturbations for two cosmological scenarios. In
radiation domination (red), the variance is smaller and the threshold for collapse is higher
(δc ≈ 0.45). In an early matter-dominated phase (orange), the variance is larger and the
threshold is lower (δc ≈ 0.1), resulting in a significantly larger fraction of perturbations
collapsing into PBHs (shaded areas) (Figure created by the author.

The density contrast is commonly expressed in terms of the primordial curvature per-

turbation, ζ(k), which remains constant on superhorizon, or larger than the cosmological

horizon scale [3]. The relation between δ(k, t) and ζ(k) for modes that enter the horizon is

given by:

δ(k, t) =
4

9

(
k

aH

)2

ζ(k), (1)

where k is the comoving wavenumber, a is the scale factor, and H is the Hubble parameter.

This equation states that the amplitude of the density fluctuations at horizon entry is directly

related to the initial curvature perturbation spectrum set during inflation [3]. Because of this

connection, the abundance of PBHs formed can be traced back to features in the primordial

power spectrum [9].

In a RD era, large amplitude fluctuations with δc ∼ 0.45 can overcome the pressure if

their physical size is on the scale of the horizon [2]. On the other hand, during an EMD,

pressure is negligible, and hence subhorizon fluctuations can collapse if the corresponding
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value of δ exceeds δc ∼ 0.1 [7]. More importantly, due to the absence of pressure, subhorizon

fluctuations freely grow during EMD:

δ(t) = δi

(
t

ti

)2/3

, (2)

where ti is the initial time corresponding to horizon entry and δi = δ(ti). Thus, a fluctuation

with a small initial value δi can collapse and form PBHs as long as it has enough time to

grow and reach the critical value δc in the EMD epoch. This dramatically increases the

probability of PBH formation during EMD [2].

3.2 PBH Mass Scaling

The mass of a PBH at the time of its formation is closely linked to the mass enclosed within

the cosmological horizon. This is because the horizon sets the maximum region over which

causal processes can operate and thus defines the largest possible collapsing region at a given

time. The horizon mass at a time t is given by:

MH(t) =
4π

3
ρ(t)R3

H , (3)

where ρ(t) is the energy density of the universe and RH is the horizon radius that is related

to Hubble parameter H(t) according to RH ≃ H−1. For a spatially flat universe dominated

by a single component (e.g., matter or radiation), the horizon mass can be simplified using

Friedmann’s equation:

H2(t) =
8πG

3
ρ(t), (4)

resulting in:

MH(t) =
M2

P

H(t)
, (5)

where MP ≡ (ℏc/8πG)−1/2 is the reduced Planck mass. Since H(t) ∝ t−1, the horizon mass

scales with time as:

MH(t) ∝ t. (6)

The mass of a PBH formed at time t is then expected to be a fraction of the horizon mass

at that time [4]:

MPBH(t) = γMH(t), (7)

where γ ∼ 0.2–0.5 is a model-dependent efficiency factor related to the equation of state and

the shape of the collapsing perturbation. This relation implies that PBHs formed earlier
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in the universe (at smaller t) are lighter, while those formed closer to the end of an early

matter-dominated phase or during radiation domination are heavier. The scaling between

PBH mass and formation time is a crucial input for predicting the PBH mass spectrum and

its dependence on the thermal history of the early universe.

3.3 PBH Mass Fraction

To estimate the fraction of the energy density that collapses into PBHs, the Press-Schechter

formalism can be used, which is a statistical approach originally developed for halo formation

in structure formation studied, but it is also applicable to PBHs. This formalism assumes

that the initial density fluctuations δ) follow a Gaussian distribution with zero mean and

variance σ2(M), where M refers to the smoothing sale (or mass scale) of the perturbation.

The probability density function is:

P (δ) =
1√

2π σ(M)
exp

(
− δ2

2σ2(M)

)
. (8)

The fraction β(M) of regions collapsing into PBHs of mass M is given by the integral of

this probability above the critical collapse threshold δc:

β(M) =

∫ ∞

δc

P (δ) dδ =

∫ ∞

δc

1√
2π σ(M)

exp

(
− δ2

2σ2(M)

)
dδ. (9)

This can be expressed in terms of the complementary error function:

β(M) =
1

2
err

(
δc√

2σ(M)

)
. (10)

In the regime where δc ≫ σ(M), which is typical for PBH formation, we can use the asymp-

totic form of the complementary error function to approximate:

β(M) ≈ σ(M)

δc
√
2π

exp

(
− δ2c
2σ2(M)

)
. (11)

This shows that the abundance of PBHs formed in a RD phase is extremely sensitive to the

amplitude of fluctuations encoded in σ(M). Even small changes in σ can lead to exponential

differences in PBH formation fraction.
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3.4 Accretion

Following their initial formation, PBHs do not necessarily remain static in mass. In an EMD

epoch, the lack of radiation pressure allows PBHs to accrete surrounding matter efficiently [6].

This accretion processes plays an important role in shaping the final mass distribution of

PBHs, and consequently determining their viability as DM candidates or sources of observa-

tional signals. Two distinct accretion mechanisms are relevant in this context: Bondi-Hoyle

and Eddington-limited accretion.

Bondi-Hoyle accretion is a spherically symmetric process in which matter is gravita-

tionally drawn into the PBH from the surrounding medium. In the absence of significant

pressure gradients, the infalling material flows inward rather efficiently, allowing for rapid

and relatively unrestricted growth. The general form of the Bondi-Hoyle accretion rate is

given by [6]:

ṀBondi = 4πr2ρ(r, t)v(r, t) (12)

where r is the radius at which the accretion flow is evaluated, ρ(r, t) is the ambient density

and v(r, t) is the inflow velocity.

As shown in the appendix, Bondi-Hoyle accretion duing in EMD results in [6]:

MB−H(t) ∝ t2/3. (13)

This power-law growth indicates that PBHs can gain several orders of magnitude in mass

during the EMD phase.

Due to the conservation of angular momentum, infalling matter gains angular velocity

as it gets closer to the black hole. If the angular velocity of infalling particles reaches the

Keplerian value before crossing the black hole horizon, a rotating disk can form. This signals

termination of Bondi-Hoyle accretion after which the PBH starts accreting from the disk.

The formation of a disk further restricts the rate at which PBHs can grow. This reinforces

the importance of early Bondi-Hoyle accretion during EMD in determining the final PBH

mass.

The Eddington luminosity, which is the maximum luminosity a black hole can sustain

while still accreting, is given by

LEdd =
4πGMmpc

σT

, (14)

where mp is the proton mass and σT is the Thomson scattering cross-section. If the accreting

black hole emits radiation near this limit, the outward pressure from the photons effectively

stops any additional infall, capping the accretion rate. The Eddington-limited accretion
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rate is the maximum rate at which a black hole can accrete matter while radiating at its

Eddington luminosity. It is given by:

ṀEdd =
LEdd

ϵc2
=

4πGMmp

ϵcσT

, (15)

where ϵ is the radiative efficiency. In the post-reheating universe, this limit becomes like a

bottleneck for further PBH growth.

This reiterates that the final mass of a PBH is determined primarily by how long it is able

to grow through Bondi-Hoyle accretion before transitioning to Eddington-limited regime [7].

4 Results

To estimate the maximum mass a PBH can attain during the EMD phase, we start from the

Bondi-Hoyle growth relation in Eq. (15) [6]:

M(t) = Mi

(
t

ti

)2/3

. (16)

If Bondi-Hoyle accretion ceases at t = tmax, the final mass will be:

Mmax = Mi

(
tmax

ti

)2/3

. (17)

As shown in the appendix:

tmax ≈ H−1
i δ6/5c σ

−9/5
H , (18)

where, σH is the variance of primordial density fluctuations. This leads to citeDeLuca:2022:

Mmax ≈ 0.3δ9/5c σ
−6/5
H Mi. (19)

We take σH ≃ 10−5 below, which implies no enhancement of density fluctuations over the

CMB value at small scales relevant for PBH formation.

We consider a situation where the onset and end of the EMD period correspond to tO

and tR respectively. Then, for PBHs that were formed at the onset of EMD, ti = tO. Also,

from Eqs. (5,7), we have :

Mi ≃
M2

P

H2
O

. (20)

The final mass of PBHs Mf depends on the relation between tR and tmax. If tmax ≲ tR, we

will have Mf = Mmax. On the other hand, Mf = Mi(tR/tO)
2/3.if tmax > tR.
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Figure 4: Final PBH mass contours as a function of initial temperature T0 and reheating
temperature TR. The shaded region indicates parameter space where efficient growth is
suppressed. (figure created by author)

In the RD phase before and and after EMD, we have:

t =
1

2
H , H =

(
π2

90
g∗(T )

)1/2
T 2

MP

, (21)

where g∗(T ) is the number of relativistic degrees of freedom at temperature T . Thus:

Mf ≃ δ9/5c σ
−6/5
H

M3
P

T 2
O

tmax ≲ tR , (22)

Mf ≃ 3

(
TO

TR

)4/3
M3

P

T 2
O

tmax > tR , (23)

where we have taken g∗(TO) = g∗(TR) = 106.75 as is the case in the standard model of

particle physics.

Fig. 4 depicts contours of constant Mf values in the T0–TR plane [7]. Regions with

lower TR and higher T0 support more efficient PBH growth, while high TR sharply limits

the accretion window. The dashed red line marks the transition boundary where the EMD

phase ends earlier than tmax (i.e., tR < tmax). In this case Mf only grows partially and does

not reach the maximum value of Mmax. The shaded region below the dashed blue line is

excluded because it does not give rise to EMD (that is, tR < tO).
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The values of Mf chosen in Fig. 4 correspond to the 1017 − 1022 g window. PBHs in this

mass window are not ruled out by current observational constraints, including those from

microlensing, the CMB, and gamma-ray background [7]. This leads to a very interesting

possibility that PBHs can constitute 100% of DM in the universe within this mass range.

What is specially compelling about this scenario is that it does not rely on particle DM

candidates that would require new physics beyond the standard model of particle physics.

Our derived mass contours show that if PBH forms early enough and the reheating

temperature is low, it can grow to reach the viable DM window. The exponential dependence

of the PBH formation fraction β(M) on the amplitude of density fluctuations σ(M) implies

that even small enhancements in the primordial power spectrum can lead to a high abundance

of PBHs. This sensitivity is important because it means that relatively modest features in

the inflationary potential or reheating dynamics could result in a universe where PBHs make

up for all or most of the dark matter.

4.1 Discussion and Conclusion

PBHs formed in the early universe could leave observable imprints through scalar-induced

gravitational waves (GWs), most commonly if the primordial curvature power spectrum is

enhanced at small scales [9]. These GWs are sensitive to the amplitude and shape of the

inflationary spectrum and can serve as an indirect probe of PBH production. During an

EMD phase, the generation of these scalar-induced gravitational waves is further amplified,

especially near the transition from matter to radiation domination. Depending on the re-

heating temperature and the PBH mass scale, these signals may fall within the sensitivity

range of upcoming gravitational wave detectors like LISA, DECIGO, or the Einstein Tele-

scope [9]. In addition, PBHs with masses between 1015 and 1016 g are being evaporated at

the present time through Hawking radiation. This process could contribute to the diffuse

gamma-ray background and may leave distinct spectral features [7]. While constraining this

low-mass end of the PBH spectrum, it also offers a potential detection route for evaporat-

ing black holes. Altogether, GWs and gamma-ray signals provide valuable observational

tools for testing the scenarios discussed in this thesis and for constraining the early universe

conditions that could lead to PBH formation.

Finally, some simplifications were made in this study that should be kept in mind when

interpreting the results. First, we assumed an idealized EMD phase with a sharp transition to

radiation domination. In reality, the end of EMD may be more gradual, and reheating could

be inhomogeneous or prolonged. These effects would change the effective growth window for

PBHs and might slightly shift the final mass contours. Also, we did not model the detailed
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shape of the curvature power spectrum. The specific inflationary model responsible for those

features was not addressed, and the variance σ(M) was treated parametrically. Despite these

simplifications, the analytical approach provides a useful framework for estimating PBH

growth and abundance trends. Future work including more precise numerical simulations or

modified accretion scenarios can build on these foundations.

In summary, the results presented in this thesis offer important insights into how PBH

could have formed and evolved during an EMD phase in the early universe. We explored

the formation and growth of PBHs during an EMD era focusing on the role of accretion. By

starting from first principles derivations and applying physically motivated accretion models,

we have shown how PBHs can grow significantly, reaching masses that not only fall within

observationally viable windows, but also make them compelling candidates for DM. One of

the most important outcomes is the link between thermal history (specifically an epoch of

EMD) and the final PBH mass. This reinforces the idea that understanding reheating isn’t

just important for inflationary models, it’s also important for any PBH-related DM scenario.
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Appendix: Derivations of PBH Growth and Accretion

Timescales

In this appendix, we provide detailed derivations of key relations used for PBH mass growth

during an EMD phase.

Bondi-Hoyle Accretion Growth During EMD

During an EMD era, PBHs grow through spherical Bondi-Hoyle accretion. The accretion

rate is [6]:

ṀBondi ∝ r2taρ(t)t, (24)

where:

• rta(t) is the turnaround radius,

• ρ(t) is the background density,

• t is cosmic time.

The self-similar collapse solution during EMD gives the following scalings:

rta(t) ∝ t1/3, ρ(t) ∝ t−2. (25)

Substituting these into the accretion rate, we find:

ṀBondi ∝ (t1/3)2 × t−2 × t, (26)

∝ t2/3 × t−2 × t, (27)

∝ t−1/3. (28)

Thus, the Bondi-Hoyle accretion rate decreases with time as Ṁ ∝ t−1/3.

Integrating this mass growth over time:

M(t) = Mi

(
t

ti

)2/3

, (29)

where Mi is the mass at the initial time ti. This shows that PBH mass grows as t2/3 during

the Bondi-Hoyle phase.
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Maximum PBH Mass

Bondi-Hoyle accretion can continue until angular velocity effects become important, leading

to disk formation. The maximum accretion time tmax is given by [8]:

tmax ≈ H−1
i δ6/5c σ

−9/5
H , (30)

where Hi is the Hubble parameter at formation, δc is the collapse threshold, and σH is the

variance of density perturbations at horizon crossing. Substituting tmax into the mass growth

formula, we find:

Mmax = Mi

(
tmax

ti

)2/3

. (31)

Since ti ∼ H−1
i , we have:

tmax

ti
≃ δ6/5c σ

−9/5
H . (32)

Thus:

Mmax ≃ Mi

(
δ6/5c σ

−9/5
H

)2/3

, (33)

= Miδ
4/5
c σ

−6/5
H . (34)

Now, recalling that the initial PBH mass Mi itself scales with the collapse threshold δc at

formation, we can absorb this into a prefactor [8], resulting in:

Mmax ≈ 0.3 δ9/5c σ
−6/5
H MH , (35)

where MH is the horizon mass at formation. We see that the maximum PBH mass depends

on both the amplitude of primordial fluctuations and the collapse threshold.

Python Code for Gaussian Distribution Plot

The following code was used to generate the Gaussian distribution figure comparing early

matter domination and radiation domination conditions:

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import norm

# Constants and parameters

mu = 0 # Mean perturbation amplitude
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sigma_rad = 0.1 # Small variance for radiation-dominated era

sigma_emd = 0.25 # Larger variance for early matter-dominated era

# Collapse thresholds

delta_c_rad = 0.45

delta_c_emd = 0.1

# x-values and PDF values

x = np.linspace(-1, 1, 1000)

y_rad = norm.pdf(x, mu, sigma_rad)

y_emd = norm.pdf(x, mu, sigma_emd)

# Shaded areas

x_fill_rad = np.linspace(delta_c_rad, 1, 500)

x_fill_emd = np.linspace(delta_c_emd, 1, 500)

y_fill_rad = norm.pdf(x_fill_rad, mu, sigma_rad)

y_fill_emd = norm.pdf(x_fill_emd, mu, sigma_emd)

# Plot

plt.figure(figsize=(10, 6))

plt.plot(x, y_rad, ’r-’, label=’Radiation-Dominated ($\\sigma=0.1$)’)

plt.plot(x, y_emd, ’orange’, label=’EMD ($\\sigma=0.25$)’)

# Fill the region above thresholds

plt.fill_between(x_fill_rad, y_fill_rad, color=’red’, alpha=0.4, label=r’$\delta > \delta_c^{\rm rad} \approx 0.45$’)

plt.fill_between(x_fill_emd, y_fill_emd, color=’orange’, alpha=0.4, label=r’$\delta > \delta_c^{\rm emd} \approx 0.1$’)

# Vertical lines for collapse thresholds

plt.axvline(delta_c_rad, color=’red’, linestyle=’--’)

plt.axvline(delta_c_emd, color=’orange’, linestyle=’--’)

# Labels and styling

plt.title(’Gaussian Distribution of Density Perturbations’)

plt.xlabel(’Perturbation Amplitude $\\delta$’)

plt.ylabel(’Probability Density’)

plt.legend()
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plt.grid(True)

plt.tight_layout()

plt.show()

Python Code for PBH Mass Contour Plot

The following code was used to generate the contours of constant final PBH mass in the

(TR, T0) plane:

import numpy as np

import matplotlib.pyplot as plt

# Mass labels and colors

mass_labels = [1e17, 1e18, 1e19, 1e20, 1e21, 1e22]

colors = [’gray’, ’green’, ’purple’, ’blue’, ’orange’, ’brown’]

# Turning points

T0_turns = np.logspace(1, 6, len(mass_labels))

TR_turns = 2 * T0_turns**(5/9)

# Temperature grid

T0 = np.logspace(0, 8, 500)

# Setup plot

fig, ax = plt.subplots(figsize=(10, 8))

# No EMD region

ax.fill_between(T0, 1, T0, color=’lightgray’, alpha=0.5, label=’No EMD’)

# Dashed reference lines

TR_edd = 2 * T0**(5/9)

ax.plot(TR_edd, T0, ’--’, color=’red’, lw=2, label=r’$t_R = t_{\rm edd}$’)

ax.plot(T0, T0, ’--’, color=’blue’, lw=2, label=r’$T_R = T_0$’)

# Draw Mf contours

for Mf, col, T0_turn, TR_turn in zip(mass_labels, colors, T0_turns, TR_turns):

TR_neg = np.logspace(np.log10(TR_turn), np.log10(T0_turn), 1000)
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T0_neg = (T0_turn * TR_turn) / TR_neg

mask = T0_neg >= TR_neg

ax.plot(TR_neg[mask], T0_neg[mask], color=col, lw=2.5)

TR_flat = np.logspace(0, np.log10(TR_turn), 300)

T0_flat = np.full_like(TR_flat, T0_turn)

ax.plot(TR_flat, T0_flat, color=col, lw=2.5, label=rf’$M_f = 10^{{{int(np.log10(Mf))}}}$ g’)

# Final formatting

ax.set_xscale(’log’)

ax.set_yscale(’log’)

ax.set_xlim(1, 1e8)

ax.set_ylim(1, 1e8)

ax.set_xlabel(r’$T_R\;[\mathrm{GeV}]$’, fontsize=14)

ax.set_ylabel(r’$T_0\;[\mathrm{GeV}]$’, fontsize=14)

ax.set_title(r’Contours of Constant Final PBH Mass in the $(T_R, T_0)$ Plane’, fontsize=16)

ax.grid(False)

ax.legend(fontsize=9, loc=’lower left’, ncol=2)

plt.tight_layout()

plt.show()
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