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Abstract
As a field, cosmology is defined by the reiterative refinement of cosmological
models, with which we make predictions about the history, evolution, and
composition of the universe. The current apex of this cycle of refinement is
the Λ cold dark matter (ΛCDM) model, primarily due to its incredible ability
to model the cosmic microwave background (CMB), one of our most well-
understood observables. The ΛCDM model exhibits some major weaknesses
in the form of the Hubble and sigma-8 tensions, and thus we are motivated
to seek further refinement. In this thesis, I present a rederivation of the
primordial perturbation modes, unifying the scattered and occasionally con-
flicting literature on the subject. In doing so, I also present a solution for the
primordial perturbation modes in the presence of a strongly self-interacting
neutrino model. By modifying the dynamics of the early universe, we open
the pathway to new research on the effects of this self-interaction on the
CMB, the discovery and characterization of physics beyond the Standard
Model, and offer a new avenue to attempt to relieve the Hubble and sigma-8
tensions.
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1
Introduction

Cosmology is the study of the universe as a single unit, and in cosmological research we seek
to better understand the history, evolution, and composition of the large-scale structure of the
universe. We probe these topics by developing models that can simultaneously agree with the
many datasets from current observations of the universe, while also giving explanations to the
discrepancies between our predictions and our observations. This recursive self-correction of
models is the cycle that cosmologists have used for decades to produce the Lambda cold dark
matter (ΛCDM) model of the universe that is currently favored by most in the field. Barring
the current issues of this model (see Perivolaropoulos and Skara, 2022), this ΛCDM picture
does a great job of modeling most of our cosmological data sets, and in particular, does an
excellent job of modeling the cosmic microwave background (CMB).

The issues we see in ΛCDM are deeply concerning because of two major issues (among others;
again, see Perivolaropoulos and Skara, 2022), the Hubble and Sigma-8 tensions, point towards
discrepancies in two very fundamental parameters. The Hubble tension refers to the fact that
using our two main methods of determining the Hubble rate, via the Cosmic Distance Ladder
(see Riess et al., 2022) and the predictions of the ΛCDM model in conjunction with the Planck
data (see Aghanim et al., 2020), we get two different values, both with multiple sigma deviation
from each other, whose error bars are only shrinking upon refinement of observational methods
and the ΛCDM model. These values seem to diverge upon further measurement, motivating
the nomenclature of ”tension”. The sigma-8 (σ8) tension is very similar, this time a measure-
ment of the relative density of the universe on the 8 Mpc scale, which has demonstrated the
same diverging behavior between our model-independent probes and the predictions of ΛCDM.
The Hubble rate being the magnitude of expansion for the universe, and σ8 being a measure
of the anisotropy of the universe, these are two vital measurements for our understanding of
the universe, and point towards major issues in our model. See Riess et al., 2022; Di Valentino
et al., 2021a; Di Valentino et al., 2021b for in depth conversations about either of these tensions.

These tensions motivate the modification of our current theoretical models as a potential
avenue for a resolution. One such modification is the addition of new phenomena to early uni-
verse dynamics. This potentially solves two issues; If we include new physics that is beyond
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the standard model (BSM), and it supplies an improvement of theoretical data’s correlation
with observational data, we have reason to 1. Investigate more BSM physics as an avenue for
improving our theoretical models, and 2. It motivates the belief that our current model, ΛCDM
may not be incomplete, but that our understanding of the physics that underlies the ΛCDM
model is where our weak point lies.

An example of new physics we could include is a strongly self-interacting neutrino model.
This is a particularly enticing approach for two major reasons: the standard model does not
predict neutrino self-interaction, making this a BSM phenomenon, and thus a candidate for all
of the solutions we discussed previously. The other exciting aspect is that neutrinos are the
only cosmological species with two isocurvature modes, which are a type of initial condition,
and thus they have two distinct ways that they can affect the predictions of our model. This
extra freedom makes neutrinos the best candidate for modification.

The effect of these initial conditions, or adiabatic and isocurvature perturbation modes, on
cosmological observables are very well constrained (see Ade et al., 2014; Akrami et al., 2020)
by the standard model, and in this model, we expect that the initial conditions of the universe
are majority adiabatic in nature, with very tight constraints on the nature and magnitude of
isocurvature effects. This means that we have sufficient sensitivity in the tests of our results
to identify whether or not the effects of a modified initial condition are realistic candidates
for solutions to the issues of the current ΛCDM model. Since these Primordial Cosmological
Modes are well characterized and well investigated (see Ma and Bertschinger, 1995; Bucher,
Moodley, and Turok, 2000; Piattella, 2018; Baumann, 2023) for current purposes of comparison
to observation, the growing Hubble and Sigma-8 tensions can also be resolved by considering
the effect of different initial conditions on the evolution of the universe.

In summary, the modification of early universe dynamics offers a unique research avenue
by which we may explore the validity of current models without abandoning these models for
radical new ideas, offering a deeper understanding of the pitfalls and weaknesses of our current
approach.

In this thesis, I prepare a general solution for the perturbative modes in the Conformal
Newtonian gauge which is used to derive the evolution equations for all possible initial condition
modes. This solution is done taking into account the effects of a strongly self-interacting neutrino
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model (that of Kreisch, Cyr-Racine, and Doré, 2020) which modifies the evolution of these
modes. To obtain this solution, we solve the Einstein and Boltzmann equations in both the
standard picture and the system in which we consider neutrino self-interaction. By presenting
a solution for the traditional picture, this work also attempts to make obvious and resolve
discrepancies in the literature on the subject of the primordial perturbation modes (in the
traditional picture without neutrino self-interaction), the primary sources of interest being Ma
and Bertschinger, 1995; Bucher, Moodley, and Turok, 2000; Piattella, 2018; Baumann, 2023, a
task that informed much of the research required to obtain our result.
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2
Background Evolution

In this chapter, we lay the groundwork for the perturbation theory we will use to find our
evolution equations. We begin by introducing the concept of the metric and covariance, the
most important aspects of General Relativity (GR) for the purposes of this work. We then
introduce the cosmological principle and the Friedmann-Lemaître-Robertson-Walker (FLRW)
model, which constitutes the underlying assumptions we make to build our background metric.
Finally, we briefly talk about the Friedmann equation for our FLRW model and introduce the
background metric from which we will build our perturbative model in the following chapter.

2.1 A Brief Overview of General Relativity

To do math in cosmology, we have to consider the effects of GR, as on the scales we work
with in cosmology, gravity is the dominant force, and our best model for gravity, especially
on these scales, is GR. In GR, we model our coordinate system as a continuously connected
four-dimensional object called spacetime. The shape of spacetime is intrinsically coupled to the
mass-energy contained within it, a relation most concisely represented by the Einstein-Field
equations:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν .

The above tensor equation is actually a system of equations described by the metric tensor,
gµν which defines the geometry of spacetime, the Ricci tensor Rµν and its associated scalar R,
which are derived quantities that specifically describe the curvature of spacetime. The right
side is described by the stress-energy tensor, Tµν which contains all of the mass-energy within
the considered region of spacetime. The constants Λ and G are the cosmological constant and
the Newtonian gravitational constant respectively.

We can give ourselves an intuition of how a metric encodes the geometry of spacetime by
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2.2. SCALES AND COORDINATES IN COSMOLOGY

writing it out in a matrix representation:

gµν −→


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

←→

gtt gtx gty gtz

gxt gxx gxy gxz

gyt gyx gyy gyz

gzt gzx gzy gzz

 ,

where the second depiction shows which terms describe the couplings between which coordinates.
For the sake of familiarity, the coordinates shown are the traditional Cartesian coordinates, time
t and space x, y, z, but the beauty of this theory comes from the fact that these coordinates can
be absolutely anything, as long as they form a proper representation of 4D space.

General relativity as a theory is written in terms of tensors, who possess the extremely
favorable mathematical property of covariance. Covariance is the fundamental freedom in the
choice of coordinate system I just mentioned, and is so favorable because regardless of the
fact that two observers in mathematically distinct reference frames will observe mathematically
distinct dynamics, when one observer transforms their reference frame to that of the other, their
equations and observations will always agree.

2.2 Scales and Coordinates in Cosmology

Often in cosmology we assume the cosmological principle which is the idea that the universe
is homogeneous and isotropic on sufficiently large scales (for a discussion, see section 2.2 of
Ryden, 2003). The version of the FLRW model (or metric) that we employ in this work hinges
on the cosmological principle as one of two underlying assumptions. The other assumption we
make is that the universe is flat, which has been observed to be true, (see Aghanim et al., 2020,
specifically their value for ΩK , shown in the conclusion) at least to the extent of our observation
capabilities.

The FLRW model is the closest thing to a global solution for the Einstein equations, as it
describes a homogeneous, isotropic, and expanding universe. Obviously, the weak point of this
model is that it becomes invalid at scales less than 100 Mpc, where the cosmological principle
breaks down, but it provides a way of talking about the universe as a whole, which is of great
importance if we ever want to compare our model to observations. For our purposes, the most
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2.3. FRIEDMANN EQUATION

important feature of the FLRW metric is that it provides a set of mathematical statements that
we know to be true on the global scale of the universe.

In the FLRW model we note that the universe is expanding, which is observationally proven
and presents an additional challenge for when we attempt to build a coordinate system for
our solutions. We can make use of the covariance of GR by redefining our coordinate system
in terms of the scale factor a(τ), which denotes the relative expansion of the universe at a
given conformal time τ , which is the coordinate for time in this new system. By moving to
this conformal coordinate system we intrinsically factor in the effect of the expansion into
our coordinates. Mathematically we redefine in the following way: Consider the classic four-
position, xµ = (t,x) where the bold represents a vector. We may define the conformal or
comoving four-position in terms of differentials of the classic four-position, specifically:

dxµ → (dxµ)′ =
dxµ

a(τ)
,

dτ

dx

dy

dz

 =
1

a(τ)


dt

dx

dy

dz

 .

For the remainder of this text, the comoving coordinates will be denoted as xµ, and all of
our math will be within this conformal coordinate system.

2.3 Friedmann Equation

In order to begin talking about perturbations, we need a background from which to perturb
our system. As we’ve stated, the flat FLRW model provides an ideal background from which to
perturb since it encapsulates all of our fundamental underlying assumptions about the structure
of the universe on a global scale.

The Friedmann equation relates the expansion of the universe to its constituent components.
We have matter and radiation, who contribute energy density (ρ) to the universe through their
mass and energy via the stress-energy tensor. We also have curvature (κ) and the cosmological
constant, both of which contribute to the energy density of the universe through their effect on
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2.3. FRIEDMANN EQUATION

the geometry. In conformal coordinates, we see the Friedmann equation appear as

(
ȧ

a

)2

=
8πGa2ρtot

3
− κ (2.1)

where the total energy density can be broken into components based off of the species:

ρtot = ργ + ρν + ρc + ρb + ρΛ.

The associated flat FLRW background metric, denoted ḡµν , we write as

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)]
,

or in matrix form:

ḡµν →


−1 0 0 0

0 a2(t) 0 0

0 0 a2(t)r2 0

0 0 0 a2(t)r2 sin2 θ

 ,

7



3
Evolution of Perturbations

In this work, we are interested in the ways our metric may be changed from the FLRW to
some slightly perturbed form, where these perturbations are being driven by the initial condi-
tions following the big bang and inflation. The condition that the effects we are deriving must
come from the inflationary epoch is what motivates us to call the effect primordial, and the
nuances and origin of this requirement will be discussed in a later chapter.

In this chapter, we begin by talking about the gauge problem for the Synchronous and Con-
formal Newtonian gauges, deriving the transformation law to go between them. We follow this
by deriving the Einstein equations from the perturbed metric. Finally, we derive the Boltz-
mann equations for each species as the last step in our preparation for finding the primordial
cosmological modes.

Before moving forward, it is important for us to define the two most popular gauges used in
finding these modes: First is the Synchronous gauge:

ds2 = a2(τ){−dτ2 + (δij + hij)dx
idxj}, (3.1)

whose perturbation hij can be decomposed into scalar, parallel, perpendicular, and transverse
components:

hij =
δijh

3
+ h

∥
ij + h⊥ij + hTij .

We will be working in Fourier space, or k-space, for the majority of this work, and thus we can
define hij in k-space as

hij(x, τ) =

∫
d3k eik·x

{
k̂ik̂jh(k, τ) +

(
k̂ik̂j −

1

3
δij

)
6η(k, τ)

}
. (3.2)

Second, we have the Newtonian gauge:

ds2 = a2(τ){−(1 + 2Ψ)dτ2 + (1 + 2Φ)dxidxi}, (3.3)

where the potentials Φ and Ψ are the famous Bardeen potentials (derived in Bardeen, 1980,
though the notation used here comes from Kodama and Sasaki, 1984).
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3.1. GAUGE PROBLEM

3.1 Gauge Problem

The gauge problem refers to the ambiguity in the choice of coordinate due to the covariance
of General Relativity. To resolve this we fix the gauge, transforming our observer to an
arbitrary, well defined coordinate system, which we do by perturbing the background metric
like with some arbitrary perturbing metric δgµν :

gµν = ḡµν + δgµν ,

gµν → a2(τ)

(
−1− 2α(xµ) wi(x

µ)

wi(x
µ) δij [1 + 2β(xµ)] + χij(x

µ)

)
,

where δij is the Kronecker delta, and χii = 0. Now within this arbitrary metric with modes
α,wi, β, χij , we want to build an understanding of these arbitrary parameters such that when
we choose a particular gauge, we can describe transformations between popular gauges with
relative ease. This analysis is done by considering a general transformation:

xµ → x̂µ = xµ + dµ(xν)

and we start by splitting this into its effect on the timelike and spacelike portions:

x̂0 = x0 +A(xµ),

x̂i = xi +∇iB(xµ) + Ci(xµ),

where we’ve split the effect on the spacelike portion into a pair of longitudinal (B) and transverse
(Ci) components, given ∇iC

i = 0. The key result we get by splitting the transformation like
this is a generalized transformation law of the metric,

ĝµν(x
λ) = gµν(x

λ)− gµβ(xλ)∂νdβ − gαν(xλ)∂µdα − dα∂αgµν(xλ) +O(d2), (3.4)

this is the law for transforming between any pair of gauges, and is where we obtain the law
we will use to transform between our two gauges. After a string of analysis that can be found
in section 3 of Ma and Bertschinger, 1995, we obtain the following laws for transformation in
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3.2. EINSTEIN EQUATIONS

k-space:

Ψ(k, τ) =
1

2k2

{
ḧ(k, τ) + 6η̈(k, τ) +

ȧ

a

[
ḣ(k, τ) + 6η̇(k, τ)

]}
, (3.5)

Φ(k, τ) =
1

2k2
ȧ

a

[
ḣ(k, τ) + 6η̇(k, τ)

]
− η(k, τ). (3.6)

From this result, we can reverse engineer a way from the Newtonian gauge to the Synchronous,
which will come in handy when we want to analyze our solutions in later work:

−η̇ +
(
ä

a
− ȧ

a

(
1 +

ȧ

a

))
η = Φ̇− ȧ

a
Ψ+

(
ȧ

a

(
1 +

ȧ

a

)
− ä

a

)
Φ. (3.7)

From here on, we will be working in the Newtonian gauge unless otherwise stated.

3.2 Einstein Equations

The next step in our solution is solving the perturbed part of the Einstein equations, or the
linearized Einstein equations, which can be written in terms of the background and perturbation
of the metric:

ḡµρδRρν + δgµρR̄ρν −
1

2
δµν δR = 8πGδTµ

ν . (3.8)

where the Ricci tensor can be broken into it’s background and perturbed components the same
way we have done with the metric.

Before we move forward, we need to quickly write down our stress-energy tensor for context
of the parameters we will be solving for in the upcoming chapters and sections:

T 0
0 = −(ρ̄+ δρ),

T 0
i = (ρ̄+ P̄ )vi,

T i
j = (P̄ + δP )δij +Σi

j , Σi
i = 0, (3.9)

these quantities will later be recast into our perturbative variables,

(ρ̄+ P̄ )θ = ikjδT 0
j , (ρ̄+ P̄ )σ = −

(
k̂ik̂j −

1

3
δij

)
Σi

j ,
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3.2. EINSTEIN EQUATIONS

when we solve for our evolution equations. In general ρi and Pi are the density and pressure of
some species i, and δi = δρi/ρi where ρi = ρ̄i + δρi is the decomposition into the background
and perturbed contributions to a given parameter, in this case density. The perturbative pa-
rameters we just defined, θi and σi are the velocity and shear-stress of some species i, which do
not have the same decomposition since they are purely perturbative quantities.

We obtain four equations from the linearized Einstein equations:

−k2Φ+
3ȧ

a

(
ȧ

a
Ψ− Φ̇

)
= 4πGa2δT 0

0 , (3.10)

k2
(
ȧ

a
Ψ− Φ̇

)
= 4πGa2(ρ̄+ P̄ )θ, (3.11)

−Φ̈ +
ȧ

a

(
Ψ̇− 2Φ̇

)
+

(
2
ä

a
− ȧ2

a2

)
Ψ− k2

3
(Φ + Ψ) =

4π

3
Ga2δT i

i , (3.12)

−k2(Φ + Ψ) = 12πGa2(ρ̄+ P̄ )σ. (3.13)

The last piece of information we need from the Einstein equations actually comes from the
conservation law of energy-momentum for some general fluid (where in GR, a fluid refers to
some continuous, deformable object with mass-energy, density, and pressure),

∇µT
µν = 0 = ∂µT

µν + Γν
αβT

αβ + Γα
αβT

νβ ,

from which we can gleam an understanding of the fractional density perturbation, δ = δρ/ρ and
velocities θ in our stress-energy:

δ̇ = −(1 + w)(θ + 3Φ̇)− 3
ȧ

a

(
δP

δρ
− w

)
δ, (3.14)

θ̇ = − ȧ
a
(1− 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ + k2Ψ. (3.15)

The transformations for the stress-energy between our two gauges is relatively simple: with
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3.3. BOLTZMANN EQUATIONS

the Synchronous gauge on the left, and the Newtonian on the right, we find that

δ̂ = δ − 1

2k2
˙̄ρ

ρ̄
(ḣ+ 6η̇), (3.16)

θ̂ = θ − 1

2
(ḣ+ 6η̇), (3.17)

δP̂ = δP − 1

2k2
˙̄P (ḣ+ 6η̇), (3.18)

σ̂ = σ. (3.19)

These relations will come in handy much later for computation, and are vital for future work
regarding implementation in Boltzmann solvers, such as CLASS (Lesgourgues, 2011) or CAMB
(Lewis and Challinor, 2011).

3.3 Boltzmann Equations

The last step in our preparation is done by evaluating the Boltzmann equations to obtain
evolution equations for the species in our system. These equations describe any general body,
not just a fluid like eqs. (3.14) and (3.15), making them much more general, and able to describe
much more complex systems. We start by taking the spacial portion of the conjugate momentum
of our system to be Pi, expressed in terms of the proper 4-momentum pµ:

Pi = a(1 + Φ)pi,

we then specify that the differential number of particles dN belonging to some differential
volume of our phase space is

f(xi, Pj , τ)dx
1dx2dx3dP1dP2dP3 = dN,

where f is the phase space distribution who is scalar and generally invariant under transfor-
mation. We can then write our stess-energy in terms of the conjugate momentum and the
distribution,

Tµ
ν =

∫
dP1dP2dP3

PµPν√
−gP 0

f(xi, Pj , τ), (3.20)
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3.3. BOLTZMANN EQUATIONS

where
f(xi, Pj , τ) = f0(ap)[1 + F(xi, Pj , τ)],

where f0 is the Fermi-Dirac or Bose-Einstein Distribution, and F is the perturbation to the
distribution due to the metric. We introduce a new parameter, the comoving momentum
qi = api, with decomposition qi = qni where ni is a direction, to remove the coordinate
dependence on the perturbation from our phase space, and we are left with

f(xi, qj , τ) = f(q)[1 + F(xi, qj , τ)].

The total derivative of our phase space is our Boltzmann Equation,

Df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni

dτ

∂f

∂ni
= C[f ], (3.21)

which simplifies to

∂F
∂τ

+ i
q

ϵ
(k · n̂)F − d ln f0

d ln q

[
Φ̇ + i

ϵ

q
(k · n̂)Ψ

]
=

1

f0
C[f ], (3.22)

where ϵ =
√
q2 + a2m2 is the comoving energy. The right term C[f ] is the collision term,

capturing any interactions that we may include in our model. The specifics of this term are
very unique to the situation and species being discussed, and will come into play when we start
talking about our evolution equations for photons and self-interacting neutrinos.

From our description of the stress-energy in eq. (3.20) and its components in eqs. (3.14)
and (3.15), we can obtain evolution equations for each species.

3.3.1 Cold Dark Matter

The equation of state for cold dark matter (CDM) is w = c2s = 0 =⇒ ẇ = 0, and only
interacts via gravity, implying σ = 0, thus we are left with

δ̇c = −θc − 3Φ̇, (3.23)

θ̇c = −
ȧ

a
θc + k2Ψ. (3.24)
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3.3. BOLTZMANN EQUATIONS

3.3.2 Massless Neutrinos

Massless neutrinos have the unique property that ϵ = q, which greatly simplifies the Boltz-
mann equation. In the early universe, neutrinos are massless and thus highly relativistic, and so
their energy density is very simply related to their pressure via their equation of state, w = 1/3,
giving us the relation ρν = 3Pν . From eq. (3.20), we can find three major equations for the
energy density δρν , pressure δPν , energy flux

(
δT 0

i

)
ν
, and shear stress

(
Σi

j

)
ν
=
(
T i

j

)
ν
−Pνδij :

δρν = 3δPν = a−4

∫
q2dqdΩ qf0(q)F , (3.25)(

δT 0
i

)
ν
= a−4

∫
q2dqdΩ qnif0(q)F , (3.26)

(
Σi

j

)
ν
= a−4

∫
q2dqdΩ q

(
ninj −

1

3
δij

)
f0(q)F , (3.27)

we then integrate away our q dependence and expand the angular dependence in terms of the
Legendre polynomials Pℓ(k̂ · n̂),

Fν(k, n̂, τ) =

∫
q2dq qf0(q)F∫
q2dq qf0(q)

=

∞∑
ℓ=0

(−i)ℓ(2ℓ+ 1)Fν,ℓ(k, τ)Pℓ(k̂ · n̂).

and thus we can recast our the parameters of our stress-energy (eq. (3.9)) in terms of our per-
turbative variables, and the expansion in ℓ, called the multipole expansion (this same expansion
method is used on photons in the next section):

δν = Fν,0,

θν =
3

4
kFν,1,

σν =
1

2
Fν,2.

We can then integrate eq. (3.22) through q2dq qf0(q) and divide by
∫
q2dq qf0(q) to recast our

Boltzmann equation in the massless neutrino context,

∂Fν

∂τ
+ ikµFν = −4(Φ̇ + ikµΨ)
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3.3. BOLTZMANN EQUATIONS

then using our Legendre expansion as well as the orthogonality condition of the polynomials to
obtain our evolution equations:

δ̇ν = −4

3
θν − 4Φ̇, (3.28)

θ̇ν = k2
(
1

4
δν − σν

)
+ k2Ψ, (3.29)

Ḟν,ℓ =
k

2ℓ+ 1
[ℓFν,(ℓ−1) − (ℓ+ 1)Fν,(ℓ+1)], ℓ ≥ 2. (3.30)

3.3.3 Photons

Photons have unique evolution equations before and after recombination. Before recombi-
nation, we see photons and baryons couple tightly, interacting via Thompson scattering. This
is a non-conservative process from the perspective of our Boltzmann equation since it involves
energy transfer between two different species, thus we expect this collisional term to effect all
multipoles ℓ. This means we expect a new collisional term to appear on the right side of our
Boltzmann equation. This collisional term is very complicated, having a familiar Fγ term that
denotes the phase space density perturbation, similar to its role in the neutrino picture, and a
new term Gγ that handles the polarization perturbation due to the scattering. Both terms are
expanded through a multipole method to give the same hierarchical structure that we obtained
in the neutrino picture. The results of this analysis reveal the following solutions, (see Ma and
Bertschinger, 1995 for description of this process)

δ̇γ = −4

3
θγ − 4Φ̇ (3.31)

θ̇γ = k2
(
1

4
δγ − σγ

)
+ k2Ψ+ aneσT (θb − θγ) (3.32)

Ḟγ2 = 2σ̇γ =
8

15
θγ −

3

5
kFγ3 −

9

5
aneσTσγ +

1

10
aneσT (Gγ0 +Gγ2) (3.33)

Ḟγℓ =
k

2ℓ+ 1

[
ℓFγ(ℓ−1) − (ℓ+ 1)Fγ(ℓ+1)

]
− aneσTFγℓ, ℓ ≥ 3 (3.34)

Ġγℓ =
k

2ℓ+ 1

[
ℓGγ(ℓ−1) − (ℓ+ 1)Gγ(ℓ+1)

]
+ aneσT

[
−Gγℓ +

1

2
(Fγ2 +Gγ0 +Gγ2)

(
δℓ0 +

δℓ2
5

)]
.

(3.35)

After recombination, photons become essentially transparent to baryons, and scattering
becomes a less noticeable effect, though it still is non-negligible.
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3.3. BOLTZMANN EQUATIONS

3.3.4 Baryons

Baryons (and leptons), in absence of their tight coupling to photons, behave as a non-
relativistic fluid and their evolution can be found similarly to the process for cold dark matter:
we see that w ≈ c2s = 0 unless the term is already on large scales ∝ k2, in which case the squared
sound speed c2s > 0 becomes non-negligible. We see this complication appear in our evolution
equations:

δ̇b = −θb − 3Φ̇, (3.36)

θ̇b = −
ȧ

a
θb + c2sk

2δb +
4ρ̄γ
3ρ̄b

aneσT (θγ − θb) + k2Ψ, (3.37)

along with the perturbation on the velocity due to the Thomson scattering process between radi-
ation. A more in depth conversation of the scattering term can be found in Ma and Bertschinger,
1995.
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4
Primordial Cosmological Modes

In this chapter we finally derive the primordial cosmological modes for which we have been
working, not before we discuss initial conditions and the theory that validates these modes as
physical solutions, as opposed to just quirks of the gauge used. We also define and discuss the
different types of primordial modes.

4.1 Super-horizon Initial Conditions

Before we state the various primordial cosmological modes we can solve for from our work,
we need one last set of equations stemming from the initial conditions of the universe. At
first this is a daunting task, but using the inflationary theory of the universe, we can give a
description of the origin of these initial conditions via super-horizon scale perturbations.
During inflation, quantum fluctuations purvey the quark-gluon plasma of the early universe,
during which we have an exponential expansion rate, much faster than that of speed of light.
As this expansion rate grows, the scale and magnitude of these quantum fluctuations balloon,
exiting the causal horizon, becoming super-horizon in scale. In k space, we denote this regime
as the period in which τ ≪ 1/k. Once inflation slows and the causal horizon catches up, we see
these fluctuations re-enter the causal universe in the horizon crossing regime, 1 ≈ kτ . It is in
this crossing regime that the initial conditions of the universe are set, since the formerly small
quantum perturbations re-enter the universe and begin effecting the densities and velocities of
the species within. Since we are so deep in the radiation dominated epoch, we can make some
sweeping approximations going forward:

a(τ) ≈
√

Ωr,0H0τ,
ȧ

a
≈ 1

τ

where H0 is the non-conformal Hubble rate today. Then, from eq. (2.1), we have

4πGa2 =
3ȧ2

2a2ρtot
, (4.1)

and we can make the claim that the density of the cosmological constant ρΛ ≪ ργ +ρν +ρc+ρb

such that it is negligible in the total density ρtot. Moreover, if we define the density fraction
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4.1. SUPER-HORIZON INITIAL CONDITIONS

Ri = ρi/ρtot, then
Rγ +Rν +Rc +Rb = 1

and furthermore Rc + Rb ≪ Rγ + Rν since we are so deep in radiation domination, thus
Rγ +Rν ≈ 1. Another observation we should make is the hierarchical order that appears from
multipole expansion, where each term Fi,ℓ = O(kτ)ℓ, and since we know kτ is very small in the
super-horizon picture, we learn from the linearized Einstein equations that

Φ ∼ Ψ ∼ δi,

θi ∝ Fi,1 ∼ (kτ)Φ ∼ (kτ)Ψ,

σi ∝ Fi,2 ∼ (kτ)2Φ ∼ (kτ)2Ψ,

and terms that are order zero in kτ dominate those that are order one, and those that are order
one dominate those that are order two, etc. We can use this approximation to argue that from
eq. (3.14), we see the simple relation

δ̇γ = −4Φ̇, δ̇ν = −4Φ̇, δ̇c = −3Φ̇, δ̇b = −3Φ̇,

and after integration,

δγ = −4Φ + 4Cγ , δν = −4Φ + Cν , δc = −3Φ + Cc, δb = −3Φ + Cb,

which we then recast as

δγ = −4Φ + 4Cγ , (4.2)

δν = δγ + Sν , (4.3)

δc =
3

4
δγ + Sc, (4.4)

δb =
3

4
δγ + Sb, (4.5)

with
Sν = Cν − 4Cγ , Sc = Cc − 4Cγ , Sb = Cb − 4Cγ ,

where Cγ is the adiabatic mode, and Si are the density isocurvature modes who we will
discuss in depth in the following section. These modes are functions of k but not τ .
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4.1. SUPER-HORIZON INITIAL CONDITIONS

The final key approximation we can make as a result of the time period we are in is the
tight-coupling approximation, where due to the tight coupling of baryons and photons, the
Thompson drag term aneσT explodes since baryons and photons essentially form a single fluid.
In this approximation, we see θγ ≈ θb, and since the scales of these perturbations are so large,
the term c2sk

2δb in eq. (3.36) will drop since c2sk2 ≈ 0, which effectively recasts the velocity
evolution of baryons to

θ̇b = −
ȧ

a
θb + k2Ψ,

which we should notice is totally equivalent to that of CDM, indicating that we can argue that
the difference θ̇b − θ̇c:

d

dτ
(τθb) =

d

dτ
(τθc),

θγ = θb = θc +
qc
τ
,

however, it is clear that this result diverges at τ = 0, indicating that what is the cold dark
matter velocity isocurvature mode, qc, must go to zero as it is the only way to ensure that
we have physical flow velocities for these three species, thus θγ = θb = θc. A similar analysis
is available to neutrinos, by comparing them to photons: Consider that to lowest order of k in
the Poisson equation (eq. (3.15)) for velocity, we obtain, for both photons and neutrinos:

θ̇γ,ν =
k2

4
δγ,ν + k2Ψ,

where we left out the high order k2σi term. This implies that, by the same process we did on
baryons and CDM, we have

d

dτ
(θγ − θν) = −

k2

4
Sν ,

θc = θb = θγ = θν −
k2τ

4
Sν − kqν .

where kqν has an extra factor of k to match the scale of the left side, and is known as the neu-
trino velocity isocurvature mode, which is physical and can be used as an initial condition.
This tight-coupling approximation leads to a lot of difficulty in numerical calculations, and the
methods used to resolve these issues are detailed in section 5.7 of Ma and Bertschinger, 1995.
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4.2. ADIABATIC AND ISOCURVATURE MODES

4.2 Adiabatic and Isocurvature Modes

Before we present the traditional solutions to these modes, we should talk briefly about
what we mean by “adiabatic” and “isocurvature”. An in depth explanation involving a deriva-
tion of thermodynamics is available in section 7.4.1 of Piattella, 2018. In this work, we will
differentiate these initial conditions by defining their effect on the gauge invariant curvature
perturbations, R and ζ, which are defined as

ζ = Φ+

∑
J RJδJ∑

J 3(1 + wJ)RJ
, R = Φ− ȧ

a

∑
J(ρJ + PJ)θJ

k2(ρtot + Ptot)
,

in the Conformal Newtonian gauge. Expanding these sums and recasting them in terms of our
adiabatic and isocurvature modes, we find that in the crossing regime kτ ≈ 1, we have:

R = ζ = Cγ +
RνSν + R̃mSmτ

4
, (4.6)

where we have introduced a shorthand: Rm = Rb + Rc, and we suppose some Sm exists such
that RmSm = RbSb +RcSc, and finally we use the fact that

Rm ≈
ρm
ρr

=
Ωm,0

Ωr,0
a ≈ Ωm,0H0τ√

Ωr,0

such that if we define R̃m = Ωm,0H0/
√
Ωr,0, then Rm = R̃mτ in radiation domination. If we

instead approach this with the goal of obtaining the gauge invariant curvature perturbations in
terms of the potentials of the Newtonian gauge, we find that

R = Φ+
1

2
(τ Φ̇−Ψ), ζ = Φ+

1

2
(τ Φ̇−Ψ) +

1

6
(kτ)2Φ

and together, we can make the observation that in the super-horizon regime, with all of the
isocurvature perturbations set to zero, we see

R = ζ = Φ− Ψ

2
= Cγ , (4.7)

and now we can notice that if we have adiabatic conditions (that is, no isocurvature pertur-
bations) we must have curvature. This defines the distinction between adiabaticity and
isocurvature in this approach. From a thermodynamic perspective, this distinction is enumer-
ated by the fact that isocurvature initial conditions contribute entropy, while adiabatic initial
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4.3. PREPARING A GENERAL SOLUTION

conditions do not.

4.3 Preparing a General Solution

We now can build out solutions for each mode, which we will do by finding one large general
form from which we can just plug in the various initial conditions, obtaining each mode on
demand. To do this, we follow the same steps as Piattella, 2018 performs in section 7.3, but in
notation consistent with what we have presented so far in this work: Expanding our linearized
Einstein equations eqs. (3.10) to (3.13), and evaluating the right side for all species, we obtain

3ȧ

a

(
Φ̇− ȧ

a
Ψ

)
+ k2Φ = 4πGa2(ργδγ + ρνδν + ρbδb + ρcδc), (4.8)

k2
(
ȧ

a
Ψ− Φ̇

)
=

4πGa2

3
(4ργθγ + 4ρνθν + ρbθb + ρcθc),

(4.9)

Φ̈ +
ȧ

a
(2Φ̇− Ψ̇) +

(
2ä

a
−
(
ȧ

a

)2
)
Ψ+

k2

3
(Φ + Ψ) = −4πGa2

3
(ργδγ + ρνδν), (4.10)

k2(Φ + Ψ) = −16πGa2(ργσγ + ρνσν), (4.11)

Applying eq. (4.1), the radiation domination condition (ȧ/a = 1/τ , and Rγ + Rν ≈ 1), the
tight-coupling approximation, and the crossing regime approximation to only keep terms of
lowest order in kτ , we see the previous result simplify greatly:

2(τ Φ̇−Ψ) + 4Φ = 4Cγ +RνSν + R̃mSmτ, (4.12)

2k2τ(Ψ− τ Φ̇) = 4θν − k2τRγSν − 4kRγqν , (4.13)

2τ2Φ̈ + 2τ(2Φ̇− Ψ̇) + 2Ψ− 4Φ = −4Cγ −RνSν , (4.14)

(kτ)2(Φ + Ψ) = −6Rνσν , (4.15)

where the σγ washes out due to the tight-coupling approximation, where the scattering removes
any preferred directions for photons. At this point, we have a system that is equivalent to that
of Piattella, 2018 (but not identical, due to differences in notation), and we can follow his work
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4.3. PREPARING A GENERAL SOLUTION

in section 7.2.5 to produce our general equation,

τ2Φ̈ + 6τ Φ̇ + 2

(
3 +

4

5
Rν

)
Φ = 4

(
1 +

3

5
Rν

)
Cγ +

2

5
(1 + 3Rν)RνSν · · ·

· · ·+
(
3

2
+

3

5
Rν

)
R̃mSmτ −

13

5
(1−Rν)

Rνqν
kτ

.

(4.16)

We first investigate the homogeneous part of our solution, setting the right hand side to zero.
Presuming we have a solution of the form Φ ∝ τp, we are able to find that

2p = −5±
√
1− 32

5
Rν

which correspond to gauge modes (solutions that arise due to choice of gauge, and not the
dynamics of the system we want to describe) that diverge at early times. The form of the
particular solution is demanded by the right hand side:

Φ = c1 + c2τ +
c3
kτ
,

whose constants can be identified by plugging this solution into our general equation, obtaining

c1 =
2(5 + 3Rν)

15 + 4Rν
Cγ +

1 + 3Rν

15 + 4Rν
RνSν , (4.17)

c2 =
3(5 + 2Rν)

8(15 + 2Rν)
R̃mSm, (4.18)

c3 =
6(Rν − 1)

(5 + 4Rν)
Rνqν . (4.19)

From this, we finally have a general solution with which we can evaluate our initial conditions:

Φ =
2(5 + 3Rν)

15 + 4Rν
Cγ +

1 + 3Rν

15 + 4Rν
RνSν +

3(5 + 2Rν)

8(15 + 2Rν)
R̃mSmτ +

6(Rν − 1)

5 + 4Rν

Rνqν
kτ

, (4.20)

Ψ =
2(2Rν − 5)

15 + 4Rν
Cγ +

8Rν − 11

2(15 + 4Rν)
RνSν +

5(2Rν − 3)

8(15 + 2Rν)
R̃mSmτ +

6(Rν − 1)

5 + 4Rν

Rνqν
kτ

, (4.21)

where we found Ψ by rearranging eq. (4.12) and using our expression for Φ.
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4.3.1 Adiabatic Mode

We find the adiabatic mode by letting Sν = Sc = Sb = qν = 0, as mentioned before.
Applying this, we see our general solution become

Φ =
2(5 + 3Rν)

15 + 4Rν
Cγ , (4.22)

Ψ =
2(2Rν − 5)

15 + 4Rν
Cγ . (4.23)

4.3.2 Cold Dark Matter and Baryon Density Isocurvature Modes

CDM and baryons have the same solution in the Newtonian gauge, and they are achieved
by letting Sν = qν = Cγ = 0, since our mode has a factor of τ in our general solution. We
know that these modes are isocurvature since our gauge invariant variable exhibits the following
property:

ζ =
R̃mSmτ

4
=⇒ ζ → 0 as τ → 0,

after setting the aforementioned modes to zero. The solutions we obtain in this picture are:

Φ =
3(5 + 2Rν)

8(15 + 2Rν)
R̃mSmτ, (4.24)

Ψ =
5(2Rν − 3)

8(15 + 2Rν)
R̃mSmτ. (4.25)

4.3.3 Neutrino Density Isocurvature Mode

To obtain the neutrino density mode, we set Sm = qν = 0, and our gauge invariant quantity
becomes:

ζ = Cγ +
RνSν

4
.

For this mode to be isocurvature, we need ζ = 0, thus 4Cγ = −RνSν , which gives solutions

Φ =
3(Rν − 1)

2(15 + 4Rν)
RνSν , (4.26)

Ψ =
3(Rν − 1)

15 + 4Rν
RνSν . (4.27)
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4.3.4 Neutrino Velocity Isocurvature Mode

To obtain the neutrino velocity mode, we set Cγ = Sm = Sν = 0, we immediately see the
isocurvature condition, ζ = 0, and the potentials become identical:

Ψ = Φ =
6(Rν − 1)

5 + 4Rν

Rνqν
kτ

. (4.28)
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5
Results

In this chapter we give a brief overview of the challenges presented by current literature on
the subject, and our approach to resolve some of the differences we observed when researching
the topic. We then prepare a solution for the adiabatic and isocurvature modes in the presence
of the self-interacting neutrino model derived in Kreisch, Cyr-Racine, and Doré, 2020, and
discuss the future avenues for research on these solutions.

5.1 Comparing to Literature

Though unplanned, a major part of this thesis became reconciling the notational, logical, and
factual differences in our various primary sources (namely Ma and Bertschinger, 1995; Bucher,
Moodley, and Turok, 2000; Piattella, 2018; Baumann, 2023). Each of these sources manages to
describe primordial cosmological perturbation modes to various extents and degrees of accuracy,
but occasionally end up disagreeing on some of the results, with even the gauges being defined
differently between each source (see table 5.1). In this work, I ended up using the definition
of O. Piatella, even though the method I used for obtaining solutions is, for the most part,
identical to the methods of C. Ma and E. Bertschinger. Unfortunately, the topics covered in
each of these sources are slightly different, meaning to get a full picture of this topic in a modern
perspective, you need to use all of them.

Author C. Ma M. Bucher et. al. O. F. Piattella D. Baumann
Time-like Potential ψ ϕ Ψ Ψ
Space-like Potential ϕ ψ −Φ Φ

Table 5.1: Differences in the stated Conformal Newtonian gauges by primary sources.

This presents a challenge, since older sources like Ma and Bertschinger, 1995 are, for the
most part comprehensive, do not cover isocurvature modes, and the work based off them, that
of Bucher, Moodley, and Turok, 2000, is riddled with unmentioned definitions and many typos.
Piattella, 2018 proves to be a vital source, pointing out and correcting many of the mistakes of
Bucher, Moodley, and Turok, 2000, but only derives the isocurvature equations in the Confor-
mal Newtonian gauge, which is problematic when most numerical solvers struggle with some
of the pathologies presented by the modes in that gauge. Finally, Baumann, 2023 presents
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5.2. THE SELF-INTERACTING NEUTRINO PICTURE

a fantastic overview of the topic, but does not actually derive any of the modes, leaving us
without a source to which we may compare Piattella, 2018.

These issues have informed and motivated the structure of this thesis to serve as more than
just a derivation of the modes in the presence of self-interacting neutrinos, but to serve as a
secondary source that compiles the years of work on this complicated subject in a comprehensive
overview that presents a complete derivation of the modes in the traditional perturbed FLRW
picture as well as the novel self-interacting picture. We also present a derived equation to move
from the Conformal Newtonian gauge to the Synchronous gauge directly within this text, with
the hope of having it be integral to comparing the results of sources in the future.

5.2 The Self-interacting Neutrino Picture

The main goal of this work has been to prepare the necessary mathematical relations and
background, along with a comprehensive picture of the physics involved, to be able to find the
solutions for the adiabatic and isocurvature modes in the presence of the novel self-interacting
neutrino model developed by Kreisch, Cyr-Racine, and Doré, 2020. To do this we first must
consider the effects of this model on our Boltzmann equation. In this work we consider the
highly relativistic, early-universe scenario in which neutrinos can be considered approximately
massless, and thus the left side of our Boltzmann equation can be left unmodified as long as
we remain within this time period. Neutrino self-interaction is inherently conservative of mass-
energy, and thus we expect to only see effects to the Boltzmann equation at multipoles ℓ ≥ 2. At
these higher multipole values, strongly self-interacting neutrinos effect our Boltzmann equation
according to the collision term:

C [f ] =
G2

effT
6
ν

4

∂ ln f
∂ ln p

∞∑
ℓ=0

(−i)ℓ(2ℓ+ 1)νℓPℓ(µ)

(
A

(
p

Tν

)
+Bℓ

(
p

Tν

)
− 2Dℓ

(
p

Tν

))
, (5.1)

from Kreisch, Cyr-Racine, and Doré, 2020, in which the values of νℓ, A,Bℓ, and Dℓ are found
in equations (C43, C52, C53, and C54).

A special discussion is reserved for the ℓ = 2 case, where the self-interacting neutrinos wash
out their own shear-stress due to the fact that these interactions do not prefer a specific direc-
tion, and thus any preferred direction that would normally cause a nonzero σν is eliminated
and we observe σν ≈ 0 in the self-interaction picture. This effect persists only in the very hot
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era of the universe we are considering, and as we get to later times where the universe has had
more time to cool down, the self-interactions become weaker and less efficient, at which point
σν ̸≈ 0, and the neutrinos begin to develop a shear stress.

Accounting for these interactions, eq. (3.30) becomes invalid, and we obtain a new solution
to our Boltzmann equation in the massless limit (see Kreisch, Cyr-Racine, and Doré, 2020):

∂Fℓ

∂τ
+ k

(
ℓ+ 1

2ℓ+ 1
Fℓ+1 −

ℓ

2ℓ+ 1
Fℓ−1

)
−4
(
k

3
Ψδℓ1 − Φ̇δℓ0

)
· · ·

· · · = −120a

7π4
G2

effT
5
νFℓ

∫ ∞

0

dxx2(A(x) +Bℓ(x)− 2Dℓ(x)),

(5.2)

where we see that for ℓ = 0, 1 the right side has A(x) + Bℓ(x) − 2Dℓ = 0, and we preserve
eqs. (3.28) and (3.29).

With this, we can start from eqs. (4.12) to (4.15), since the fluid equations from the solu-
tion to the linearized Einstein equations are still valid. The point where we diverge from the
traditional derivation is thus when we set σν ≈ 0 due to the scattering, and time period we are
considering. When we do this, it becomes immediately apparent from eq. (4.15) that:

Φ = −Ψ, (5.3)

which we can immediately turn around and apply to eq. (4.12) to obtain a general equation for
Φ:

2τ Φ̇ + 6Φ = 4Cγ +RνSν + R̃mSmτ (5.4)

Note that we do not need to include eq. (4.14) since it’s first derivative and eq. (4.12)’s second
derivative are equal, and thus they represent redundant parts of the solution. The homogeneous
solution is trivial, and nonphysical

Φ = Cτ−3,

since it diverges at τ = 0 for anything with C ̸= 0. The particular solution can be solved via
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integration constant, obtaining the result:

Φ =
2

3
Cγ +

1

6
RνSν +

1

8
R̃mSmτ (5.5)

note that this solution has no dependence on the neutrino velocity isocurvature mode. While
it is trivial to show what Ψ is, we can get an equation for θν by plugging our result and it’s
derivative into eq. (4.13), giving:

θν =
k2τ

4

((
1− 4

3
Rν

)
Sν −

4

3
Cγ −

1

4
R̃mSmτ

)
+ (1−Rν)kqν (5.6)

Now, we can look at the various modes.

5.2.1 Adiabatic Mode

Just like before, we set all isocurvature modes to zero, Sν = Sm = qν = 0, and investigate
our result:

Φ =
2

3
Cγ , (5.7)

θν =
k2τ

3
Cγ . (5.8)

An important sanity check here is making sure that the adiabaticity condition we showed earlier,
eq. (4.7), is satisfied, which it is, since letting Φ = −Ψ implies that 3Φ = 2Cγ which is the exact
result we see in our mode.

5.2.2 Cold Dark Matter and Baryon Density Isocurvature Modes

We let Cγ = Sν = qν = 0, indicating that once again we have a gauge invariant curvature
perturbation that becomes zero at early time τ → 0. This is sufficient for the isocurvature
condition, and we are able to obtain our modes:

Φ =
1

8
R̃mSmτ, (5.9)

θν = −k
2τ2

16
R̃mSm. (5.10)
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5.2. THE SELF-INTERACTING NEUTRINO PICTURE

5.2.3 Neutrino Density Isocurvature Mode

We let Sm = qν = 0, and again have the implication that 4Cγ = −RνSν since our mode is
isocurvature, and thus ζ = 0, which leaves us with

Φ = 0, (5.11)

θν =
k2τ

4
(1−Rν)Sν . (5.12)

5.2.4 Neutrino Velocity Isocurvature Mode

We let Cγ = Sν = Sm = 0, observe that ζ = 0 immediately, and obtain

Φ = 0, (5.13)

θν = (1−Rν)kqν . (5.14)
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6
Conclusions

In this work we have presented a unified picture of the derivation of the primordial per-
turbation modes under two distinct models: The traditional, flat FLRW model perturbed to
the Newtonian gauge, as well as a novel addition to this model in the form of a strongly self-
interacting neutrino process, which eliminates the shear-stress of neutrinos and produces some
very unique perturbative modes. The purpose of presenting this work as an in depth derivation
of the traditional picture stems from the lack of concise, unified literature on the subject, with
Piattella, 2018 being the most complete reference for these modes.

Our results in the self-interacting model are very promising, presenting a significant depar-
ture from the dynamics we see in the traditional picture. We also see some very exotic effects,
such as the gravitational potentials sourcing no scalar perturbations in the case of the neutrino
density and velocity isocurvature modes, where we only see scalar perturbations coming from
the neutrino velocity.

In presenting a solution to the modes in the presence of self-interacting neutrinos, we have
opened up a number of avenues for future research regarding the investigation of the effect of
these modes on cosmological observables. The immediate follow up to this work is to convert
our results to the Synchronous gauge for comparison and implementation in a Boltzmann solver
such as CLASS (Lesgourgues, 2011), or CAMB (Lewis and Challinor, 2011). This work would
allow for us to simulate the effect on observables due to our model, allowing us to compare
these effects to observational data like PLANCK.

This work also serves as a gateway to the generalization of the quantities we have derived.
The presented results are valid under a very specific set of approximations that, in future
work, could be progressively relaxed and evaluated for a more complete understanding of the
perturbative dynamics of a self-interacting neutrino system, learning about how these modes
evolve in later times and different epochs.
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