Approximate exchange-only entangling gates for the three-spin-1/2 decoherence-free subsystem

Presenting Author: Jim van Meter, National Institute of Standards and Technology, Boulder
Contributing Author(s): Emanuel Knill

The three-spin-1/2 decoherence-free subsystem defines a logical qubit protected from collective noise and supports exchange-only universal gates. Such logical qubits are well-suited for implementation with electrically-defined quantum dots. Exact exchange-only entangling logical gates exist but are challenging to construct and understand. We use a decoupling strategy to obtain straightforward approximate entangling gates. A benefit of the strategy is that if the physical spins are aligned, then it can implement evolution under entangling Hamiltonians. Hamiltonians expressible as linear combinations of logical Pauli products not involving $\sigma_y$ can be implemented directly. Gates such as the CNOT can be implemented without the assumption on the physical spins. We compare the control complexity of implementing CNOT to previous methods and find that the complexity for fault-tolerant fidelities is competitive.

(Session 5 : Sunday from 5:00pm - 7:00pm)


SQuInT Chief Organizer
Akimasa Miyake, Associate Professor

SQuInT Local Organizers
Rafael Alexander, Postdoctoral Fellow
Chris Jackson, Postdoctoral Fellow

SQuInT Administrator
Gloria Cordova
505 277-1850

SQuInT Assistant
Wendy Jay

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director

Tweet About SQuInT 2019!