Entropic energy-time uncertainty relation

Presenting Author: Patrick Coles, Los Alamos National Laboratory
Contributing Author(s): Vishal Katariya, Seth Lloyd, Iman Marvian, Mark Wilde

Energy-time uncertainty plays an important role in quantum foundations and technologies, and it was even discussed by the founders of quantum mechanics. However, standard approaches (e.g., Robertson's uncertainty relation) do not apply to energy-time uncertainty because, in general, there is no Hermitian operator associated with time. Following previous approaches, we quantify time uncertainty by how well one can read off the time from a quantum clock. We then use entropy to quantify the information-theoretic distinguishability of the various time states of the clock. Our main result is an entropic energy-time uncertainty relation for general time-independent Hamiltonians, stated for both the discrete-time and continuous-time cases. Our uncertainty relation is strong, in the sense that it allows for a quantum memory to help reduce the uncertainty, and this formulation leads us to reinterpret it as a bound on the relative entropy of asymmetry. Due to the operational relevance of entropy, we anticipate that our uncertainty relation will have information-processing applications.

Read this article online: https://arxiv.org/abs/1805.07772

(Session 5 : Sunday from 5:00pm - 7:00pm)


SQuInT Chief Organizer
Akimasa Miyake, Associate Professor

SQuInT Local Organizers
Rafael Alexander, Postdoctoral Fellow
Chris Jackson, Postdoctoral Fellow

SQuInT Administrator
Gloria Cordova
505 277-1850

SQuInT Assistant
Wendy Jay

SQuInT Founder
Ivan Deutsch, Regents' Professor, CQuIC Director

Tweet About SQuInT 2019!