Program

SESSION 1: It from ion qubits at SQuInT

Chair: (Isaac Chuang (Massachusetts Institute of Technology))
8:30am-9:15amDavid Wineland, NIST, Boulder/University of Oregon
NIST ions at SQuInT
Abstract. The trapped ion group at NIST has enjoyed a long and rewarding association with SQuInT and its precursor meetings organized by Ivan Deutsch and colleagues. SQuInT's lifetime coincides closely with the rapid growth of interest in Quantum Information (QI) that followed the introduction of Shor's algorithm. These days, there are approximately fifty trapped-ion groups around the world that contribute to QI and many more groups pursuing QI in other physical platforms. I will highlight some of the developments of the NIST ions, but these are only representative of the progress being made by many groups around the world.
9:15am-9:45amDavid Allcock, National Institute of Standards and Technology, Boulder
Entangling trapped ions with a low-frequency magnetic field gradient
Abstract. Entangled states of trapped ions are typically generated using laser-induced spin-motion coupling. Spin-motion coupling with hyperfine qubits has also been demonstrated with microwave magnetic fields instead of lasers, thus eliminating photon scattering errors and offering potential benefits for scalability. These experiments have relied on either static magnetic field gradients or oscillating magnetic field gradients at GHz frequencies[1-4]. We present a method of spin-motion coupling using microwaves and a magnetic field gradient oscillating at MHz frequencies, related to the optical method discussed in [5]. We entangle the internal states of two trapped 25Mg+ ions in a cryogenic microfabricated surface-electrode trap and characterize the Bell-state fidelity. This implementation offers important technical advantages over both the static-gradient and GHz-gradient techniques. [1] Mintert and Wunderlich PRL 87, 257904 (2001) [2] Weidt et al. PRL 117, 220501 (2016) [3] Ospelkaus et al. Nature 476, 181 (2011) [4] Harty et al. PRL 117, 140501 (2016) [5] Ding et al. PRL 113, 073002 (2014)

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2018!