Quantum simulation of electronic structure with linear depth and connectivity

Presenting Author: Ian Kivlichan, Harvard University
Contributing Author(s): Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Chan, Ryan Babbush

As physical implementations of quantum architectures emerge, it is increasingly important to consider the cost of algorithms for practical connectivities between qubits. We show that by using an arrangement of gates that we term the fermionic swap network, we can simulate a Trotter step of the electronic structure Hamiltonian in exactly N depth and with N^2/2 two-qubit entangling gates, and prepare arbitrary Slater determinants in at most N/2 depth, all assuming only a minimal, linearly connected architecture. We conjecture that no explicit Trotter step of the electronic structure Hamiltonian is possible with fewer entangling gates, even with arbitrary connectivities. These results represent significant practical improvements on the cost of all current proposed algorithms for both variational and phase estimation based simulation of quantum chemistry.

Read this article online: https://arxiv.org/abs/1711.04789

(Session 5 : Thursday from 5:00pm - 7:00 pm)


SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU

SQuInT Administrator
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor

Tweet About SQuInT 2018!