A CPHASE gate between Rydberg‐dressed neutral atoms

Presenting Author: Michael Martin, Sandia National Laboratories
Contributing Author(s): Jongmin Lee, Yuan- Yu Jau, Ivan Deutsch, Grant Biedermann

Neutral atom‐based qubits are highly scalable and controllable. With optical excitation of high‐lying, strongly interacting Rydberg states, one can achieve on‐demand, laser‐controlled interactions for quantum logic operations. We present studies of entangling operations within a two‐atom system employing individually trapped ultra‐cold cesium atoms that interact via single‐photon laser coupling to a Rydberg level [1], where the Rydberg‐dressed many‐body Hamiltonian permits pairwise and beyond-pairwise interaction regimes. We describe a detailed study of a two‐atom controlled‐phase (CPHASE) gate that is insensitive to the detrimental effects of atomic motion and light shifts, and that should enable high-quality entangling operations between atom pairs or within larger ensembles. We also present work towards larger‐scale systems employing reconfigurable traps formed via digital holography, with the goal of scaling the successes of the two‐atom system. [1] Y.‐Y. Jau et al., “Entangling atomic spins with a Rydberg‐dressed spin‐flip blockade,” Nat. Phys. 12, 71‐74 (2016). This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories.

(Session 13 : Saturday from 4:15pm-4:45pm)


SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU

SQuInT Administrator
Gloria Cordova
505 277-1850

SQuInT Founder
Ivan Deutsch, Regents' Professor

Tweet About SQuInT 2018!