Abstracts

Optical CNOT gate from two level system

Presenting Author: Dawit Hailu, Ben Gurion University of the Negev

The solution of a two level system driven by a Laser in the adiabatic limit is determined using third order Magnus expansion. We made the assumption that the laser is on resonance or close to resonance with the Bohr transition. As a consequence of which we are able to obtain a Hamiltonian which commute with itself at different times. We solve the problem using the Sylvester Formula where we make use of the eigenvalues. We propose that the dynamics mimics the behaviour of CNOT gate. To achieve this we make use of the observables (Population and coherences) as input/output of the gate.

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!