Abstracts

Multipartite entanglement in stabilizer tensor networks

Presenting Author: Sepehr Nezami, Stanford University
Contributing Author(s): Michael Walter

Tensor network models reproduce important structural features of holography, including the Ryu-Takayanagi formula for the entanglement entropy and quantum error correction in the entanglement wedge. In contrast, only little is known about their multipartite entanglement structure, which has been of considerable recent interest. In this work, we study random stabilizer tensor networks and show that here the tripartite entanglement question has a sharp answer: The average number of GHZ triples that can be extracted from a stabilizer tensor network is small, implying that the entanglement is predominantly bipartite. As a consequence, we obtain a new operational interpretation of the monogamy of the Ryu-Takayanagi mutual information and an entropic diagnostic for higher-partite entanglement. Our technical contributions include a spin model for evaluating the average GHZ content of stabilizer tensor networks and a novel formula for the third moment of random stabilizer states.

Read this article online: https://arxiv.org/pdf/1608.02595.pdf

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!