Abstracts

Universal fault-tolerant computing with Bacon-Shor codes

Presenting Author: Theodore Yoder, Massachusetts Institute of Technology

We present an optimized universal gate set, consisting of Hadamard and controlled-controlled-Z (CCZ), on Bacon-Shor subsystem codes. For concatenated Bacon-Shor codes, our gates possess a provably high asymptotic threshold under adversarial noise. For topological Bacon-Shor codes, our gates do not possess a threshold, but fail to do so only to the extent that a Bacon-Shor topological memory also fails. The smallest Bacon-Shor code has particularly simple implementations of our universal gates with the smallest space-time footprint of any known universal scheme by nearly 50% while also using no postselected state creation. We discuss possible implementation in ion trap architectures, where we find our CCZ is roughly three times faster than a magic-state version, a difference that translates to implementations of Shor's algorithm.

Read this article online: http://web.mit.edu/~tjyoder/Public/universal-fault-tolerant-draft.pdf

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!