Abstracts

Towards quantum information transport through a classical conductor

Presenting Author: Da An, University of California, Berkeley
Contributing Author(s): Dylan Gorman, Erik Urban, Maya Lewin-Berlin and Hartmut Haeffner

Establishing quantum links between separately trapped ions is a significant step towards scalable trapped ion quantum computation. Here, we present our design, simulation, and ongoing implementation of a novel surface ion trap for studying quantum correlations between separate trapping sights through an ordinary conducting wire. This is a challenging task since the thermal noise in the wire is much greater than the motional ion energy, but as long as the decoherence sources are minimized, we can achieve quantum coupling through the wire. We also include intermediate steps towards this goal, such as characterizing the stability of our novel trap, which has variable trapping height, and establishing a classical link through the wire. This technology may lead to quantum computation with mixed ion species, sympathetic cooling of ion species that cannot be co-trapped, and hybrid quantum devices that couple ion based qubits with superconducting qubits.

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!