Abstracts

The statistical framework for "Chained Bell Inequality Experiment with High-Efficiency Measurements"

Presenting Author: Scott Glancy, National Institute of Standards and Technology
Contributing Author(s): P. Bierhorst, T. R. Tan, Y. Wan, S. Erickson, D. Kienzler, E. Knill, D. Leibfried, and D. J. Wineland

We recently performed correlation measurements on two 9Be+ ions that violate a chained Bell inequality obeyed by any local-realistic theory. The correlations can be modeled as derived from a mixture of a local-realistic probabilistic distribution and a distribution that violates the inequality. This poster describes the statistical framework used to quantify the maximum local-realistic fraction in the observed distribution without assuming fair-sampling of the measurements or that the distribution was independent and identical across trials. This framework excludes models of our experiment whose local-realistic fraction is above 0.327 at the 95 % confidence level. Supported by IARPA, ONR, and the NIST Quantum Information program

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!