Abstracts

Random quantum circuits with varying topologies and gate sets

Presenting Author: Anthony Polloreno, Rigetti Quantum Computing
Contributing Author(s): Nicholas Rubin, Robert Smith, and William Zeng

We build on recent results using sampling from the output of random unitary matrices as a metric for quantum supremacy. We first investigate the relationship between the choice of gate set and the circuit depth required to converge to the Porter-Thomas distribution. In particular, we note that convergence is possible using iSWAP gates in place of CZ gates. Next we explore the effects of varying qubit connectivity on the convergence behavior of random circuits. We address the feasibility of these schemes with near-term superconducting qubit hardware.

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!