Abstracts

Dissipative quasi-local stabilization of generic pure quantum states

Presenting Author: Salini Karuvade, Dartmouth College
Contributing Author(s): Peter D. Johnson, Francesco Ticozzi, and Lorenza Viola

Dissipative control techniques with physically realizable resource constraints are attracting increasing attention across quantum information processing. A pure quantum state is called "dissipatively quasi-locally stabilizable" (DQLS) if it can be prepared by using purely dissipative continuous-time or discrete-time dynamics with respect to a fixed locality constraint. We characterize the DQLS nature of generic quantum states in finite dimensions for some simple yet important locality constraints, and provide conditions that must be satisifed if the states are DQLS, in more general cases. Our results shed light on approximate stabilization techniques for target pure states that are otherwise non-DQLS. Further, we describe how a state being DQLS ensures that the state is uniquely determined by its corresponding reduced states, illustrating a connection between the tasks of state preparation and local tomography. In the process, we give a constructive procedure for uniquely reconstructing a generic global state from its reduced neighborhood states, leveraging its stabilizability properties.

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!