Abstracts

Semiclassical and quantum control of chaos

Presenting Author: Sacha Greenfield, Carleton College
Contributing Author(s): Alexei Stepanenko, Jessica Eastman, Andre Carvalho (Department of Quantum Science, Australian National University, Canberra, Australia), Bibek Pokharel and Arjendu Pattanayak (Department of Physics, Carleton College, Northfield, Minnesota)

Chaotic systems contain infinitely many unstable periodic trajectories that only appear for very particular initial conditions. Given a system starting at arbitrary initial conditions, we can “control” the system onto one of these trajectories by small, properly timed perturbations in system parameters. While previously only classical chaotic systems have been controlled, we aim to control chaos in a regime where the system is also quantum mechanical. We have controlled chaos in computer simulations of the classical and semiclassical damped driven double-well Duffing oscillators, and are currently implementing control using noisy semiclassical versions and stochastic Schrodinger equation trajectories of the same system.

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!