Abstracts

Approximate reversal of quantum Gaussian dynamics

Presenting Author: Siddhartha Das, Louisiana State University
Contributing Author(s): Ludovico Lami, and Mark M. Wilde

Recently, there has been focus on determining the conditions under which the data processing inequality for quantum relative entropy is satisfied with approximate equality. The solution of the exact equality case is due to the work of Petz, who showed that the quantum relative entropy between two states stays the same after the action of a quantum channel if and only if there is a {\it reversal channel} that recovers the original states after the channel acts. Furthermore, this reversal channel can be constructed explicitly and is now called the "Petz recovery map". Recent developments have shown that a variation of the Petz recovery map works well for recovery in the case of approximate equality of the data processing inequality. Our main contribution here is a proof that bosonic Gaussian states and channels possess a particular closure property, namely, that the Petz recovery map associated to a bosonic Gaussian state and a bosonic Gaussian channel is itself a bosonic Gaussian channel. We furthermore give an explicit construction of the Petz recovery map in this case, in terms of the mean vector and covariance matrix of a given Gaussian state and the Gaussian specification of a given Gaussian channel.

(Session 5 : Thursday from 5:00pm - 7:00pm)

 

SQuInT Chief Organizer
Akimasa Miyake, Assistant Professor
amiyake@unm.edu

SQuInT Co-Organizer
Mark M. Wilde, Assistant Professor LSU
mwilde@phys.lsu.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

SQuInT Event Coordinator
Karen Jones, LSU
kjones@cct.lsu.edu

SQuInT Founder
Ivan Deutsch, Regents' Professor
ideutsch@unm.edu

Tweet About SQuInT 2017!