Program

SESSION 12: Superconductor for QIP (theory) (Pavilion I - III)

Chair: Emily Pritchett (HRL)
1:30 pm - 2:15 pmJay Gambetta, (IBM)
Exploring small quantum error correcting codes with superconducting qubits

Abstract. I will review IBM's current approach towards quantum computing with superconducting qubits. The goal is to build a system using quantum error correction schemes based on rotated surface codes, which has a high error threshold, requires only nearest-neighbor qubit interactions, and uses simple syndrome extraction circuits. I will discuss our results on achieving high fidelity two- and single- quit gates, long coherence times, and our recent results on demonstrating small codes on square lattices of superconducting qubits.

2:15 pm - 2:45 pmEddy Timmermans, (Los Alamos)
A DC-SQUID force sensor: an atomtronic proposal

Abstract. In atomtronics cold atom physicists laser-guide ultra-cold atoms in closed flow patterns that resemble the current of an electronic circuit. The control of and measurement on such flows can realize novel sensing protocols. Following a superfluid helium proposal, the recently reported Bose-Einstein condensate (BEC) superfluid quantum interference devices (SQUIDs) can, in principle, measure rotations. The reported BEC-SQUID - a single loop BEC with movable effective potential barriers that act as Josephson constrictions - realized the two arm geometry of interferometers and demonstrated the Josephson constricted critical current of conventional superconducting SQUIDs. However, these atomtronic devices did not support the flow-through current that feeds into and out of the superfluid SQUID loop of direct current (DC) SQUIDs. We propose an atomtronic BEC-SQUID design that is based on a two-loop geometry, in which the two loops share a leg: One loop of finite winding number controls the BEC current that feeds into a second loop of two Josephson constricted arms. We propose to meet the challenge of measuring the current of a neutral, superfluid particle flow by controlling the length of the control loop at fixed winding number. The control loop length at which the steady flow of the SQUID loop ceases to be superfluid is the critical length. We develop the direct current superfluid circuit analysis that predicts the critical length. We show that the effect of a weak external force on the dispersion of the coherent BEC wave can be described by an effective index of refraction. The weak external force alters the critical length and determining the critical length can measure the force on a micron scale distance and possibly at high resolution.

SQuInT Chief Organizer
Prof. Akimasa Miyake
amiyake@unm.edu

SQuInT Co-Organizer
Prof. Elohim Becerra
fbecerra@unm.edu

SQuInT Founder
Prof. Ivan Deutsch
ideutsch@unm.edu

SQuInT Administrator
Gloria Cordova
gjcordo1@unm.edu
505 277-1850

Tweet About SQuInT 2016!