July 22, Week 8

Today: Fluids, Chapter 13 and Periodic Motion, Chapter 14

Final Exam, Thursday. 9:00-10:30 or 11:00-12:15

Four review questions on the final will come from tests \#1, 2, 4, and 6. There will be six questions based on new material. You may skip two questions.

Fluids and Density

Fluid - Anything that can flow \Rightarrow either a liquid or a gas

Fluids and Density

Fluid - Anything that can flow \Rightarrow either a liquid or a gas

To find the pressure in a fluid, we need its density, ρ. (To be more precise, we use its mass density \Rightarrow the ratio of its mass to its volume)

$$
\rho=\frac{m}{V}
$$

Unit: $\mathrm{kg} / \mathrm{m}^{3}$

Fluids and Density

Fluid - Anything that can flow \Rightarrow either a liquid or a gas

To find the pressure in a fluid, we need its density, ρ. (To be more precise, we use its mass density \Rightarrow the ratio of its mass to its volume)

$$
\rho=\frac{m}{V} \quad \text { Unit: } \mathrm{kg} / \mathrm{m}^{3}
$$

Since the book uses it so much: $1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?
(a) Both the mass and the density will double.

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?

(a) Both the mass and the density will double.

(b) Both the mass and the density will

Moveable Piston be cut in half.

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?
(a) Both the mass and the density will double.
(b) Both the mass and the density will
 be cut in half.
(c) The density will stay the same but the mass will double.

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?
(a) Both the mass and the density will double.
(b) Both the mass and the density will
 be cut in half.
(c) The density will stay the same but the mass will double.
(d) The mass will stay the same but the density will double

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?
> (a) Both the mass and the density will double.
(b) Both the mass and the density will
 be cut in half.
(c) The density will stay the same but the mass will double.
(d) The mass will stay the same but the density will double
(e) The mass will stay the same but the density will be cut in half.

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?
(a) Both the mass and the density will double.
(b) Both the mass and the density will
 be cut in half.
(c) The density will stay the same but the mass will double.
(d) The mass will stay the same but the density will double
(e) The mass will stay the same but the density will be cut in half.

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?
> (d) The mass will stay the same but the density will double

The mass is determined by the number of molecules. Since the number isn't changing neither is the mass. $\rho=$ $m / V \Rightarrow$ cutting V in half while keeping m fixed will double the density.

Density Exercise

A gas is sealed in a container that has a moveable piston on one side (so the volume can change). If the volume is cut in half, which of the following is a correct statement?
> (d) The mass will stay the same but the density will double

The mass is determined by the number of molecules. Since the number isn't changing neither is the mass. $\rho=$ $m / V \Rightarrow$ cutting V in half while keeping m fixed will double the density.

Liquids (and solids) are essentially incompressible \Rightarrow cannot change their volume without adding or removing more mass \Rightarrow they have a constant density.

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

Imagine a cylinder of the fluid of height d and cross-sectional area A

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

Imagine a cylinder of the fluid of height d and cross-sectional area A

As well as the weight of the fluid there is a force on the top of the cylinder from whatever is above it. (Usually air.)

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

More Pressure

Imagine a cylinder of the fluid of height d and cross-sectional area A

As well as the weight of the fluid there is a force on the top of the cylinder from whatever is above it. (Usually air.)
The fluid is not moving $\Rightarrow \sum F_{y}=$ $0 \Rightarrow$ there must be a larger force on the bottom.

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

More Pressure

Imagine a cylinder of the fluid of height d and cross-sectional area A

As well as the weight of the fluid there is a force on the top of the cylinder from whatever is above it. (Usually air.)
The fluid is not moving $\Rightarrow \sum F_{y}=$ $0 \Rightarrow$ there must be a larger force on the bottom.

$$
F_{\text {bottom }}=F_{t o p}+w
$$

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

More Pressure

Imagine a cylinder of the fluid of height d and cross-sectional area A

As well as the weight of the fluid there is a force on the top of the cylinder from whatever is above it. (Usually air.)
The fluid is not moving $\Rightarrow \sum F_{y}=$ $0 \Rightarrow$ there must be a larger force on the bottom.
$F_{\text {bottom }}=F_{\text {top }}+w$
Pressure, $p=F / A \Rightarrow p_{\text {bottom }}=p_{\text {top }}+w / A$

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

More Pressure

Imagine a cylinder of the fluid of height d and cross-sectional area A

As well as the weight of the fluid there is a force on the top of the cylinder from whatever is above it. (Usually air.)
The fluid is not moving $\Rightarrow \sum F_{y}=$ $0 \Rightarrow$ there must be a larger force on the bottom.
$F_{\text {bottom }}=F_{\text {top }}+w$
Pressure, $p=F / A \Rightarrow p_{\text {bottom }}=p_{\text {top }}+w / A$
$w=m g, \rho=m / V$, and $V=A d \Rightarrow w / A=\rho g d$

Pressure and Depth

The pressure in a fluid increases with depth below the surface.

More Pressure

Imagine a cylinder of the fluid of height d and cross-sectional area A

As well as the weight of the fluid there is a force on the top of the cylinder from whatever is above it. (Usually air.)
The fluid is not moving $\Rightarrow \sum F_{y}=$ $0 \Rightarrow$ there must be a larger force on the bottom.
$F_{\text {bottom }}=F_{\text {top }}+w$
Pressure, $p=F / A \Rightarrow p_{\text {bottom }}=p_{\text {top }}+w / A$
$w=m g, \rho=m / V$, and $V=A d \Rightarrow w / A=\rho g d$

$$
p_{\text {bottom }}=p_{\text {top }}+\rho g d \Rightarrow p=p_{0}+\rho g d
$$

Depth Exercise

Which is the correct ranking, from smallest to largest, of the pressure values in the following container?

Depth Exercise

Which is the correct ranking, from smallest to largest, of the pressure values in the following container?

$$
\text { (a) } 1=2,3=4,5
$$

Depth Exercise

Which is the correct ranking, from smallest to largest, of the pressure values in the following container?
(a) $1=2,3=4,5$

(b) $5,3=4, \quad 1=2$

Depth Exercise

Which is the correct ranking, from smallest to largest, of the pressure values in the following container?

$$
\text { (a) } 1=2,3=4,5
$$

(b) $5,3=4, \quad 1=2$
(c) $1,3,2=4=5$

Depth Exercise

Which is the correct ranking, from smallest to largest, of the pressure values in the following container?
(a) $1=2,3=4,5$

(b) $5,3=4, \quad 1=2$
(c) $1,3,2=4=5$
(d) $3,1,2=4=5$

Depth Exercise

Which is the correct ranking, from smallest to largest, of the pressure values in the following container?

$$
\text { (a) } 1=2,3=4,5
$$

$$
\text { (b) } 5,3=4, \quad 1=2
$$

(c) $1,3,2=4=5$
(d) $3, \quad 1,2=4=5$

$$
\text { (e) } 2=4=5,1,3
$$

Depth Exercise

Which is the correct ranking, from smallest to largest, of the pressure values in the following container?

$$
\text { (a) } 1=2,3=4,5
$$

$$
\text { (b) } 5, \quad 3=4, \quad 1=2
$$

(c) $1,3,2=4=5$

$$
\text { (d) } 3,1,2=4=5
$$

$$
\text { (e) } 2=4=5,1,3
$$

Depth Exercise

Which is the correct ranking, from smallest to largest, of the pressure values in the following container?

$$
\text { (d) } 3, \quad 1,2=4=5
$$

All points on a horizontal line in a fluid are at the same pressure

Depth Exercise II

What is wrong with this figure?

Depth Exercise II

What is wrong with this figure?
(a) The water on side A should be higher than side B.

Depth Exercise II

What is wrong with this figure?
(a) The water on side A should be higher than side B.

(b) The water on side A should be lower than side B.

Depth Exercise II

What is wrong with this figure?
(a) The water on side A should be higher than side B.

(b) The water on side A should be lower than side B.
(c) There is nothing wrong with this figure.

Depth Exercise II

What is wrong with this figure?
(a) The water on side A should be higher than side B.

(b) The water on side A should be lower than side B.
(c) There is nothing wrong with this figure.
(d) Intentionally left blank.

Depth Exercise II

What is wrong with this figure?
(a) The water on side A should be higher than side B.

(b) The water on side A should be lower than side B.
(c) There is nothing wrong with this figure.
(d) Intentionally left blank.
(e) Intentionally left blank.

Depth Exercise II

What is wrong with this figure?
(a) The water on side A should be higher than side B.

(b) The water on side A should be lower than side B.
(c) There is nothing wrong with this figure.
(d) Intentionally left blank.
(e) Intentionally left blank.

Depth Exercise II

What is wrong with this figure?
(c) There is nothing wrong with this figure.

Pressure is determined only by the vertical amount of fluid not the width of the container. Since the depths are the same on both sides, the pressures are the same, and the fluid will stay at rest.

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

The fluid is not moving $\Rightarrow \sum F_{y}=0 \Rightarrow$

$$
F_{\text {bottom }}=F_{\text {top }}+w_{\text {fluid }}
$$

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

The fluid is not moving $\Rightarrow \sum F_{y}=0 \Rightarrow$ $F_{\text {bottom }}=F_{\text {top }}+w_{\text {fluid }}$
$\Rightarrow F_{\text {bottom }}-F_{\text {top }}=w_{\text {fluid }}$

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

The fluid is not moving $\Rightarrow \sum F_{y}=0 \Rightarrow$
$F_{\text {bottom }}=F_{\text {top }}+w_{\text {fluid }}$
$\Rightarrow F_{\text {bottom }}-F_{\text {top }}=w_{\text {fluid }}$
If we submerge an object with the same size as the cylinder, it will have the same $F_{\text {bottom }}$ and $F_{\text {top }} \Rightarrow$ an overall upward buoyant force, $\overrightarrow{\mathbf{F}}_{B}$

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

> The fluid is not moving $\Rightarrow \sum F_{y}=0 \Rightarrow$
> $F_{\text {bottom }}=F_{\text {top }}+w_{\text {fluid }}$
> $\Rightarrow F_{\text {bottom }}-F_{\text {top }}=w_{\text {fluid }}$

If we submerge an object with the same size as the cylinder, it will have the same $F_{\text {bottom }}$ and $F_{\text {top }} \Rightarrow$ an overall upward buoyant force, $\overrightarrow{\mathbf{F}}_{B}$

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

The fluid is not moving $\Rightarrow \sum F_{y}=0 \Rightarrow$
$F_{\text {bottom }}=F_{\text {top }}+w_{\text {fluid }}$
$\Rightarrow F_{\text {bottom }}-F_{\text {top }}=w_{\text {fluid }}$
If we submerge an object with the same size as the cylinder, it will have the same $F_{\text {bottom }}$ and $F_{\text {top }} \Rightarrow$ an overall upward buoyant force, $\overrightarrow{\mathbf{F}}_{B}$

$$
F_{B}=F_{\text {bottom }}-F_{\text {top }}=w_{\text {fluid }}=\left(m_{\text {fluid }}\right) g
$$

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

The fluid is not moving $\Rightarrow \sum F_{y}=0 \Rightarrow$
$F_{\text {bottom }}=F_{\text {top }}+w_{\text {fluid }}$
$\Rightarrow F_{\text {bottom }}-F_{\text {top }}=w_{\text {fluid }}$
If we submerge an object with the same size as the cylinder, it will have the same $F_{\text {bottom }}$ and $F_{\text {top }} \Rightarrow$ an overall upward buoyant force, $\overrightarrow{\mathbf{F}}_{B}$

$$
\begin{aligned}
& F_{B}=F_{\text {bottom }}-F_{\text {top }}=w_{\text {fluid }}=\left(m_{\text {fluid }}\right) g \\
& \Rightarrow F_{B}=\rho_{f} V_{f} g
\end{aligned}
$$

Buoyancy

Replacing a fluid with a different material causes an upwards buoyant force

The fluid is not moving $\Rightarrow \sum F_{y}=0 \Rightarrow$

$$
F_{\text {bottom }}=F_{\text {top }}+w_{\text {fluid }}
$$

$$
\Rightarrow F_{b o t t o m}-F_{t o p}=w_{\text {fluid }}
$$

If we submerge an object with the same size as the cylinder, it will have the same $F_{\text {bottom }}$ and $F_{\text {top }} \Rightarrow$ an overall upward buoyant force, $\overrightarrow{\mathbf{F}}_{B}$

$$
\begin{aligned}
& F_{B}=F_{\text {bottom }}-F_{\text {top }}=w_{\text {fluid }}=\left(m_{\text {fluid }}\right) g \\
& \Rightarrow F_{B}=\rho_{f} V_{f} g
\end{aligned}
$$

By using $V_{f}=$ volume of the fluid displaced, we can do any size object that doesn't have to be completely submerged

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

If completely submerged, $V_{f}=V_{o} \Rightarrow \rho_{o}=\rho_{f}$

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

If completely submerged, $V_{f}=V_{o} \Rightarrow \rho_{o}=\rho_{f}$

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

If completely submerged, $V_{f}=V_{o} \Rightarrow \rho_{o}=\rho_{f}$
If floating, V_{f} is the part "underwater" $\Rightarrow V_{f}<V_{o} \Rightarrow \rho_{o}<\rho_{f}$

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

If completely submerged, $V_{f}=V_{o} \Rightarrow \rho_{o}=\rho_{f}$
If floating, V_{f} is the part "underwater" $\Rightarrow V_{f}<V_{o} \Rightarrow \rho_{o}<\rho_{f}$

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

If completely submerged, $V_{f}=V_{o} \Rightarrow \rho_{o}=\rho_{f}$
If floating, V_{f} is the part "underwater" $\Rightarrow V_{f}<V_{o} \Rightarrow \rho_{o}<\rho_{f}$

Buoyancy Exercise

Which of the blocks shown has a density greater than the fluid in which they are submerged/floating?

If completely submerged, $V_{f}=V_{o} \Rightarrow \rho_{o}=\rho_{f}$
If floating, V_{f} is the part "underwater" $\Rightarrow V_{f}<V_{o} \Rightarrow \rho_{o}<\rho_{f}$

Fluid Flow

The motion of fluids is a very complex phenomena.

Fluid Flow

The motion of fluids is a very complex phenomena.

To simplify as much as possible, we usually make three assumptions:

Fluid Flow

The motion of fluids is a very complex phenomena.

To simplify as much as possible, we usually make three assumptions:

1. The fluid is incompressible as it flows. (Gases are hard to compress once they are moving, so it's a pretty good assumption for them too.)

Fluid Flow

The motion of fluids is a very complex phenomena.

To simplify as much as possible, we usually make three assumptions:

1. The fluid is incompressible as it flows. (Gases are hard to compress once they are moving, so it's a pretty good assumption for them too.)
2. The flow is steady \Rightarrow the velocity at a given point is constant.

Fluid Flow

The motion of fluids is a very complex phenomena.

To simplify as much as possible, we usually make three assumptions:

1. The fluid is incompressible as it flows. (Gases are hard to compress once they are moving, so it's a pretty good assumption for them too.)
2. The flow is steady \Rightarrow the velocity at a given point is constant. Steady flow is also called laminar. Non-steady is called turbulent.

Fluid Flow

The motion of fluids is a very complex phenomena.

To simplify as much as possible, we usually make three assumptions:

1. The fluid is incompressible as it flows. (Gases are hard to compress once they are moving, so it's a pretty good assumption for them too.)
2. The flow is steady \Rightarrow the velocity at a given point is constant. Steady flow is also called laminar. Non-steady is called turbulent.
3. The fluid is nonviscous. Viscosity is analogous to friction.

The Continuity Equation

Since we assume fluids are incompressible, as they flow an equal volume must be moving into and out of each part of the fluid's container.

The Continuity Equation

Since we assume fluids are incompressible, as they flow an equal volume must be moving into and out of each part of the fluid's container.

These two cylinders of fluid

The Continuity Equation

Since we assume fluids are incompressible, as they flow an equal volume must be moving into and out of each part of the fluid's container.

These two cylinders of fluid

Setting the volumes equal and dividing by time gives the Continuity Equation:

$$
A_{1} v_{1}=A_{2} v_{2}
$$

The Continuity Equation

Since we assume fluids are incompressible, as they flow an equal volume must be moving into and out of each part of the fluid's container.

These two cylinders of fluid

Setting the volumes equal and dividing by time gives the Continuity Equation:

$$
A_{1} v_{1}=A_{2} v_{2}
$$

Another way to give this equation is to define the Volume Flow Rate, Q volume per second

The Continuity Equation

Since we assume fluids are incompressible, as they flow an equal volume must be moving into and out of each part of the fluid's container.

These two cylinders of fluid

Setting the volumes equal and dividing by time gives the Continuity Equation:

$$
A_{1} v_{1}=A_{2} v_{2}
$$

Another way to give this equation is to define the Volume Flow Rate, Q volume per second $Q=\frac{\Delta V}{\Delta t}$ Unit: m^{3} / s

The Continuity Equation

Since we assume fluids are incompressible, as they flow an equal volume must be moving into and out of each part of the fluid's container.

These two cylinders of fluid

have the same volume: $\Delta V_{1}=\Delta V_{2}$.

Setting the volumes equal and dividing by time gives the Continuity Equation:

$$
A_{1} v_{1}=A_{2} v_{2}
$$

Another way to give this equation is to define the Volume Flow Rate, Q volume per second $Q=\frac{\Delta V}{\Delta t}$ Unit:

$$
Q=A v=\text { constant }
$$

Periodic Motion

Periodic Motion or Oscillation - Any repeated motion.

Periodic Motion

Periodic Motion or Oscillation - Any repeated motion.

Terms:

Periodic Motion

Periodic Motion or Oscillation - Any repeated motion.

Terms: Cycle - One complete round trip.

Periodic Motion

Periodic Motion or Oscillation - Any repeated motion.

Terms: Cycle - One complete round trip.
Amplitude, A - Maximum displacement from zero.

Periodic Motion

Periodic Motion or Oscillation - Any repeated motion.

Terms: Cycle - One complete round trip.
Amplitude, A - Maximum displacement from zero.
Period, T - Time for one cycle.

Periodic Motion

Periodic Motion or Oscillation - Any repeated motion.

Terms: Cycle - One complete round trip.
Amplitude, A - Maximum displacement from zero.
Period, T - Time for one cycle.
Frequency, f - The number of cycles per time.

Periodic Motion

Periodic Motion or Oscillation - Any repeated motion.

Terms: Cycle - One complete round trip.
Amplitude, A - Maximum displacement from zero.
Period, T - Time for one cycle.
Frequency, f - The number of cycles per time.

$$
f=\frac{1}{T}
$$

Periodic Motion

Periodic Motion or Oscillation - Any repeated motion.

Terms: Cycle - One complete round trip.
Amplitude, A - Maximum displacement from zero.
Period, T - Time for one cycle.
Frequency, f - The number of cycles per time.

$$
f=\frac{1}{T} \quad \text { Unit: } \frac{1}{s}=H z \text { (Hertz) }
$$

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

$$
\sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

$$
\sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

$$
-F_{e l}=m a_{x}
$$

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

$$
\sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

$$
\sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

Simple Harmonic Motion

Simple Harmonic Motion (SHM) - The simplest type of periodic motion. Occurs when a mass is connected to a spring with no friction.

$$
\sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

$$
\begin{aligned}
& -F_{e l}=m a_{x} \\
& -k x=m a_{x} \\
& a_{x}=-\frac{k}{m} x
\end{aligned}
$$

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

$$
x=A \cos \left(\frac{2 \pi t}{T}\right)
$$

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?
(a) $0 s$

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?
(a) $0 s$
(b) $3 s$

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?
(a) $0 s$
(b) 3 s

(c) 6 s

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?
(a) $0 s$
(b) $3 s$

(c) 6 s
(d) $9 s$

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?
(a) $0 s$
(b) 3 s
(c) 6 s
(d) $9 s$
(e) 12 s

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?
(a) $0 s$
(b) $3 s$

(c) 6 s
(d) $9 s$
(e) 12 s

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?

(a) $0 s$
(b) $3 s$
(c) 6 s
(d) $9 s$
(e) 12 s

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?

\Rightarrow Must have been moving to the left from 0 to 6 s

SHM Exercise I

For the SHM shown below, at what time did the mass have the maximum speed and was going to the left?

\Rightarrow Must have been moving to the left from 0 to $6 s$
Changing direction at 0 and $6 s \Rightarrow v=0 \Rightarrow$ going fastest in the middle

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

From Calculus and $a_{x}=-\frac{k}{m} x$

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Simple Harmonic Motion II

For a mass started from rest, a distance A from zero, it can be shown that:

$$
x=A \cos \left(\frac{2 \pi t}{T}\right)
$$

From Calculus and $a_{x}=-\frac{k}{m} x$

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

The mass and the spring constant values determine the period

