July 14, Week 7

Today: Chapter 7, Torque

Homework \#7 due Monday, July 21 at 5:00pm

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathbf{r}}$), only the component of $\overrightarrow{\mathbf{F}}$ which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When \vec{F} is not perpendicular to the lever arm ($\overrightarrow{\mathbf{r}}$), only the component of $\overrightarrow{\mathbf{F}}$ which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathbf{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathbf{r}}$), only the component of $\overrightarrow{\mathbf{F}}$ which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When \vec{F} is not perpendicular to the lever arm ($\overrightarrow{\mathbf{r}}$), only the component of $\overrightarrow{\mathbf{F}}$ which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When \vec{F} is not perpendicular to the lever $\operatorname{arm}(\vec{r})$, only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When \vec{F} is not perpendicular to the lever $\operatorname{arm}(\vec{r})$, only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever $\operatorname{arm}(\vec{r})$, only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever $\operatorname{arm}(\vec{r})$, only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

$$
\begin{aligned}
& F_{\|}-\text {component } \\
& \text { parallel to } \overrightarrow{\mathbf{r}}- \\
& \text { causes no torque }
\end{aligned}
$$

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever $\operatorname{arm}(\vec{r})$, only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

$F_{\|}-$component
parallel to $\overrightarrow{\mathbf{r}}-$
causes no torque

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm (\vec{r}), only the component of \vec{F} which is perpendicular to \vec{r} causes torque.

$F_{\|}$- component
parallel to $\overrightarrow{\mathrm{r}}-$
causes no torque
F_{\perp} - component perpendicular to $\overrightarrow{\mathrm{r}}$

- causes torque

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm (\vec{r}), only the component of $\overrightarrow{\mathbf{F}}$ which is perpendicular to \vec{r} causes torque.

$F_{\|}-$component
parallel to $\overrightarrow{\mathbf{r}}-$
causes no torque
F_{\perp} - component perpendicular to \vec{r}

- causes torque

$$
\tau=r F_{\perp}
$$

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm (\vec{r}), only the component of $\overrightarrow{\mathbf{F}}$ which is perpendicular to \vec{r} causes torque.

$F_{\|}$- component
parallel to $\overrightarrow{\mathrm{r}}$ -
causes no torque
F_{\perp} - component perpendicular to $\overrightarrow{\mathrm{r}}$

- causes torque

$$
\tau=r F_{\perp}
$$

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathbf{r}}$), only the component of $\overrightarrow{\mathbf{F}}$ which is perpendicular to \vec{r} causes torque.

$F_{\|}$- component parallel to $\overrightarrow{\mathbf{r}}$ causes no torque
F_{\perp} - component perpendicular to \vec{r}

- causes torque

$$
\tau=r F_{\perp}=r F \sin \phi
$$

General Torque

The direction of the force also determines the torque. When $\overrightarrow{\mathrm{F}}$ is not perpendicular to the lever arm ($\overrightarrow{\mathrm{r}}$), only the component of $\overrightarrow{\mathrm{F}}$ which is perpendicular to \vec{r} causes torque.

$F_{\|}$- component parallel to $\overrightarrow{\mathrm{r}}$ causes no torque
F_{\perp} - component
perpendicular to \vec{r}

- causes torque

$$
\tau=r F_{\perp}=r F \sin \phi
$$

ϕ is angle between $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{F}}$

General Torque Exercise

In which of the following cases would the torque have the maximum value?

General Torque Exercise

In which of the following cases would the torque have the maximum value?
(a)

General Torque Exercise

In which of the following cases would the torque have the maximum value?
(a)

(b)

General Torque Exercise

In which of the following cases would the torque have the maximum value?

(c)

General Torque Exercise

In which of the following cases would the torque have the maximum value?

(c)

(d) They each
cause no torque

General Torque Exercise

In which of the following cases would the torque have the maximum value?
(a)

(c)

(d) They each
cause no torque
(e) They each cause equal torque

General Torque Exercise

In which of the following cases would the torque have the maximum value?

(c)

(d) They each
cause no torque
(e) They each cause equal torque

General Torque Exercise

In which of the following cases would the torque have the maximum value?

(c)

(d) They each
cause no torque
$\tau_{3}=(2 m)(1 N) \sin 30^{\circ}=1 N \cdot m$
(e) They each cause equal torque

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

Perpendicular Distance

The calculation of torque can be simplified in some cases by the use of the perpendicular distance.

Perpendicular Distance, d - The distance from the axis of rotation to the force's line of action that is perpendicular to the line of action.

$$
\tau=r F \sin \phi=(r \sin \phi) F
$$

$$
\tau=d F
$$

Line of Action

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

Perpendicular Distance II

The perpendicular distance is particularly useful in finding the torque exerted by vertical forces.

For vertical forces:

$$
\tau=x F
$$

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Each particle creates $\tau_{i}=x_{i} w_{i}$

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Each particle creates $\tau_{i}=x_{i} w_{i}$

Center of gravity is at $x_{c g}$
where $\sum_{i} \tau_{i}=x_{c g} w$

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of gravity is at $x_{c g}$
where $\sum_{i} \tau_{i}=x_{c g} w$

Center of Gravity

Real objects consist of many particles. When experiencing a gravitational torque, each individual particle experiences a torque.

Center of Gravity - The position at which the sum of the torques on the individual particles equals the single torque exerted by the total weight of the object.

Center of gravity is at $x_{c g}$
where $\sum_{i} \tau_{i}=x_{c g} w$

Center of Gravity Exercise

A 300- N uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

(b) $450 \mathrm{~N} \cdot \mathrm{~m}$
(c) $600 \mathrm{~N} \cdot \mathrm{~m}$
(d) $900 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

(b) $450 \mathrm{~N} \cdot \mathrm{~m}$
(c) $600 \mathrm{~N} \cdot \mathrm{~m}$
(d) $900 \mathrm{~N} \cdot \mathrm{~m}$
(e) $1200 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$

(b) $450 \mathrm{~N} \cdot \mathrm{~m}$
(c) $600 N \cdot m$
(d) $900 \mathrm{~N} \cdot \mathrm{~m}$
(e) $1200 \mathrm{~N} \cdot \mathrm{~m}$

Center of Gravity Exercise

A $300-N$ uniform bar is leaning against a wall as shown. What is the gravitational torque magnitude about the point O ?
Uniform \Rightarrow center of
(a) $300 \mathrm{~N} \cdot \mathrm{~m}$ gravity at the center $\Rightarrow \tau_{g}=(2 m)(300 N)$

(b) $450 \mathrm{~N} \cdot \mathrm{~m}$
(c) $600 N \cdot m$
(d) $900 \mathrm{~N} \cdot \mathrm{~m}$
(e) $1200 \mathrm{~N} \cdot \mathrm{~m}$

Static Equilibrium

An object in equilibrium is not accelerating and not rotating.

Static Equilibrium

An object in equilibrium is not accelerating and not rotating.

Not accelerating $\Rightarrow \sum \overrightarrow{\mathbf{F}}=0$

Static Equilibrium

An object in equilibrium is not accelerating and not rotating.

Not accelerating $\Rightarrow \sum \overrightarrow{\mathbf{F}}=0$
So $\sum F_{x}=0$ and $\sum F_{y}=0$

Static Equilibrium

An object in equilibrium is not accelerating and not rotating.

Not accelerating $\Rightarrow \sum \overrightarrow{\mathbf{F}}=0$
So $\sum F_{x}=0$ and $\sum F_{y}=0$

Not rotating $\Rightarrow \sum \tau=0$

Static Equilibrium

An object in equilibrium is not accelerating and not rotating.

Not accelerating $\Rightarrow \sum \overrightarrow{\mathrm{F}}=0$
So $\sum F_{x}=0$ and $\sum F_{y}=0$

Not rotating $\Rightarrow \sum \tau=0$
Note: The sum of the torques about any point must be zero.

Equilibrium Example

A $300-N$ uniform bar is resting against a wall as shown. There is no friction between the bar and the wall at point A, but how much friction must be acting on the bar at O ?

Stability

The condition $\sum \tau=0$ also determines whether something tips over.

Stability

The condition $\sum \tau=0$ also determines whether something tips over.

Stability

The condition $\sum \tau=0$ also determines whether something tips over.
$\overrightarrow{\mathbf{W}}$ located at the center of gravity

Stability

The condition $\sum \tau=0$ also determines whether something tips over.
$\overrightarrow{\mathbf{W}}$ located at the center of gravity

Stability

The condition $\sum \tau=0$ also determines whether something tips over.
$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$

Stability

The condition $\sum \tau=0$ also determines whether something tips over.

$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$

Stability

The condition $\sum \tau=0$ also determines whether something tips over.

$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$

$$
\sum \tau=\tau_{g}+\tau_{n}
$$

Stability

The condition $\sum \tau=0$ also determines whether something tips over.

$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$

$$
\sum \tau=\tau_{g}+\tau_{n} \quad \sum \tau=0 \Rightarrow \tau_{n}+\tau_{g}=0
$$

Stability

The condition $\sum \tau=0$ also determines whether something tips over.
$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$
$\sum \tau=\tau_{g}+\tau_{n} \quad \sum \tau=0 \Rightarrow \tau_{n}+\tau_{g}=0$
Put origin at the location of \vec{n}
$\Rightarrow \overrightarrow{\mathrm{n}}$ causes no torque

Stability

The condition $\sum \tau=0$ also determines whether something tips over.
$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$
$\sum \tau=\tau_{g}+\tau_{n} \quad \sum \tau=0 \Rightarrow \tau_{n}+\tau_{g}=0$
Put origin at the location of \vec{n}
$\Rightarrow \overrightarrow{\mathrm{n}}$ causes no torque
$\Rightarrow \tau_{g}=0$

Stability

The condition $\sum \tau=0$ also determines whether something tips over.
$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$
$\sum \tau=\tau_{g}+\tau_{n} \quad \sum \tau=0 \Rightarrow \tau_{n}+\tau_{g}=0$
Put origin at the location of \vec{n}
$\Rightarrow \overrightarrow{\mathrm{n}}$ causes no torque
$\Rightarrow \tau_{g}=0$

Stability

The condition $\sum \tau=0$ also determines whether something tips over.
$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$
$\sum \tau=\tau_{g}+\tau_{n} \quad \sum \tau=0 \Rightarrow \tau_{n}+\tau_{g}=0$
Put origin at the location of \vec{n}
$\Rightarrow \overrightarrow{\mathrm{n}}$ causes no torque

$$
\Rightarrow \tau_{g}=0 \quad \tau_{g}=x_{c m} W \Rightarrow x_{c m}=0
$$

Stability

The condition $\sum \tau=0$ also determines whether something tips over.
$\overrightarrow{\mathrm{W}}$ located at the center of gravity

Also have a normal force $\overrightarrow{\mathrm{n}}$
$\sum \tau=\tau_{g}+\tau_{n} \quad \sum \tau=0 \Rightarrow \tau_{n}+\tau_{g}=0$
Put origin at the location of \vec{n}
$\Rightarrow \overrightarrow{\mathrm{n}}$ causes no torque
$\Rightarrow \tau_{g}=0 \quad \tau_{g}=x_{c m} W \Rightarrow x_{c m}=0$
An object is stable only when its center of gravity is right above its normal force

Stability

The condition $\sum \tau=0$ also determines whether something tips over.

$\overrightarrow{\mathrm{W}}$ located at the center of gravity
Also have a normal force $\overrightarrow{\mathrm{n}}$

$$
\sum \tau=\tau_{g}+\tau_{n} \quad \sum \tau=0 \Rightarrow \tau_{n}+\tau_{g}=0
$$

Put origin at the location of \vec{n}
$\Rightarrow \overrightarrow{\mathrm{n}}$ causes no torque
$\Rightarrow \tau_{g}=0 \quad \tau_{g}=x_{c m} W \Rightarrow x_{c m}=0$
An object is stable only when its center of gravity is right above its normal force

