July 10, Week 6

Today: Finish Chapter 10, Begin Chapter 7, Rotational Motion

Homework \#6 due tomorrow

General Energy Conservation III

$$
\frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k s_{i}^{2}+W_{\text {other }}=\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k s_{f}^{2}
$$

Example: An 80 kg man jumps onto a spring platform $\overline{(k=1800} 0 \mathrm{~N} / \mathrm{m})$ going $9 \mathrm{~m} / \mathrm{s}$. How far does he compress the spring?

General Energy Conservation III

$$
\frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k s_{i}^{2}+W_{\text {other }}=\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k s_{f}^{2}
$$

Example: An 80 kg man jumps onto a spring platform $\overline{(k=1800} 0 \mathrm{~N} / \mathrm{m})$ going $9 \mathrm{~m} / \mathrm{s}$. How far does he compress the spring?

Example: An 80 kg man skydives from a plane 1600 m above the ground. If he lands with a speed of $10 \mathrm{~m} / \mathrm{s}$ (and was essentially at rest when he jumped), how much work did his parachute do?

Thermal Energy

The work done by friction is changed into Thermal Energy, $E_{t h}$

Thermal Energy

The work done by friction is changed into Thermal Energy, $E_{t h}$
The work done by friction: $W_{f}=-\Delta E_{t h}$

Thermal Energy

The work done by friction is changed into Thermal Energy, $E_{t h}$
The work done by friction: $W_{f}=-\Delta E_{t h}$
We can recover conservation of energy by including thermal energy:

$$
\frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k s_{i}^{2}+W_{o t h e r}+W_{f}=\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k s_{f}^{2} \Rightarrow
$$

Thermal Energy

The work done by friction is changed into Thermal Energy, $E_{t h}$
The work done by friction: $W_{f}=-\Delta E_{t h}$
We can recover conservation of energy by including thermal energy:

$$
\begin{aligned}
& \frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k s_{i}^{2}+W_{o t h e r}+W_{f}=\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k s_{f}^{2} \Rightarrow \\
& \frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k s_{i}^{2}+W_{o t h e r}-\Delta E_{t h}=\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k s_{f}^{2} \Rightarrow
\end{aligned}
$$

Thermal Energy

The work done by friction is changed into Thermal Energy, $E_{t h}$
The work done by friction: $W_{f}=-\Delta E_{t h}$
We can recover conservation of energy by including thermal energy:

$$
\begin{aligned}
& \frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k s_{i}^{2}+W_{o t h e r}+W_{f}=\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k s_{f}^{2} \Rightarrow \\
& \frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k s_{i}^{2}+W_{o t h e r}-\Delta E_{t h}=\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k s_{f}^{2} \Rightarrow \\
& \frac{1}{2} m v_{i}^{2}+m g y_{i}+\frac{1}{2} k s_{i}^{2}+W_{o t h e r}=\frac{1}{2} m v_{f}^{2}+m g y_{f}+\frac{1}{2} k s_{f}^{2}+\Delta E_{t h}
\end{aligned}
$$

Thermal Energy Exercise

A $10-\mathrm{kg}$ mass sliding to the right, initially with speed $3 \mathrm{~m} / \mathrm{s}$, is stopped by friction. How much thermal energy will be created by this process?

Thermal Energy Exercise

A $10-\mathrm{kg}$ mass sliding to the right, initially with speed $3 \mathrm{~m} / \mathrm{s}$, is stopped by friction. How much thermal energy will be created by this process?
(a) 10 J

Thermal Energy Exercise

A $10-\mathrm{kg}$ mass sliding to the right, initially with speed $3 \mathrm{~m} / \mathrm{s}$, is stopped by friction. How much thermal energy will be created by this process?
(a) 10 J
(b) 15 J

Thermal Energy Exercise

A $10-\mathrm{kg}$ mass sliding to the right, initially with speed $3 \mathrm{~m} / \mathrm{s}$, is stopped by friction. How much thermal energy will be created by this process?
(a) 10 J
(b) 15 J

Thermal Energy Exercise

A $10-\mathrm{kg}$ mass sliding to the right, initially with speed $3 \mathrm{~m} / \mathrm{s}$, is stopped by friction. How much thermal energy will be created by this process?
(a) 10 J
(b) 15 J

(c) 30 J
(d) 45 J

Thermal Energy Exercise

A $10-\mathrm{kg}$ mass sliding to the right, initially with speed $3 \mathrm{~m} / \mathrm{s}$, is stopped by friction. How much thermal energy will be created by this process?
(a) 10 J
(b) 15 J
(c) 30 J
(d) 45 J
(e) 90 J

Thermal Energy Exercise

A $10-\mathrm{kg}$ mass sliding to the right, initially with speed $3 \mathrm{~m} / \mathrm{s}$, is stopped by friction. How much thermal energy will be created by this process?
(a) 10 J
(b) 15 J
(c) 30 J
(d) 45 J
(e) 90 J

Thermal Energy Exercise

A 10-kg mass sliding to the right, initially with speed $3 \mathrm{~m} / \mathrm{s}$, is stopped by friction. How much thermal energy will be created by this process?
(a) 10 J
(b) 15 J
(c) 30 J
(d) 45 J
(e) 90 J

No springs or gravity $\Rightarrow \frac{1}{2} m v_{i}^{2}=\frac{1}{2} m v_{f}^{2}+\Delta E_{t h}$

$$
v_{i}=3 \mathrm{~m} / \mathrm{s}, v_{f}=0 \Rightarrow 45 J=0+\Delta E_{t h}
$$

Power

Power - The rate at which energy is used or work is done.

$$
P_{a v}=\frac{\Delta E}{\Delta t}=\frac{W}{\Delta t}
$$

Power

Power - The rate at which energy is used or work is done.

$$
P_{a v}=\frac{\Delta E}{\Delta t}=\frac{W}{\Delta t} \quad \text { unit: } J / s=W a t t
$$

Power

Power - The rate at which energy is used or work is done.

$$
P_{a v}=\frac{\Delta E}{\Delta t}=\frac{W}{\Delta t} \quad \text { unit: } J / s=W a t t
$$

In the U. S., unit of work is $l b \cdot f t$. The unit of power should be the $l b \cdot f t / s$, but we use the horsepower $(h p)$.

Power

Power - The rate at which energy is used or work is done.

$$
P_{a v}=\frac{\Delta E}{\Delta t}=\frac{W}{\Delta t} \quad \text { unit: } J / s=W a t t
$$

In the U. S., unit of work is $l b \cdot f t$. The unit of power should be the $l b \cdot f t / s$, but we use the horsepower ($h p$).

$$
1 \mathrm{hp}=550 \mathrm{lb} \cdot \mathrm{ft} / \mathrm{s}=746 \mathrm{Watt}
$$

Rotational Motion

$\underline{\text { Rotational Motion - The spinning or rolling of a rigid body. }}$

Rotational Motion

$\underline{\text { Rotational Motion - The spinning or rolling of a rigid body. }}$

Rigid Body - A "big" object that does not change shape while spinning.

Rotational Motion

Rotational Motion - The spinning or rolling of a rigid body.

Rigid Body - A "big" object that does not change shape while spinning.

Non-negligible size, i.e, can't be treated as a particle

Rotational Axis

All rotation occurs about an axis.

Rotational Axis

All rotation occurs about an axis.
Axis of Rotation - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Rotational Axis

All rotation occurs about an axis.
Axis of Rotation - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Perpendicular to motion
$\Rightarrow 90^{\circ}$ to all $\overrightarrow{\mathrm{v}}$

Rotational Axis

All rotation occurs about an axis.
Axis of Rotation - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

Perpendicular to motion
$\Rightarrow 90^{\circ}$ to all $\overrightarrow{\mathrm{v}}$

Rotational Axis

All rotation occurs about an axis.
Axis of Rotation - The imaginary line passing through the point (or points) of zero linear velocity that is perpendicular to the motion.

> Perpendicular to motion $\Rightarrow 90^{\circ}$ to all $\overrightarrow{\mathrm{v}}$

The rotational axis is along the z-axis, i.e., into and out of the page

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, ctikrough which of the points shown is the axis of rotation passiãg?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

(a)
(b)
(c)
(d)
(e)

Axis Exercise

For the following motion, through which of the points shown is the axis of rotation passing?

(a)
(b)
(c)
(d)
(e)

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest

- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss cirqular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to stitediscuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation

Non-Circular Objects

Putting the origin of the coordinate system at the axis of rotation allows us to still discuss circular motion.

- Point of Interest
- Axis of Rotation
$r=$ distance from axis of rotation

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid סodyis very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

$$
\omega_{A}=\omega_{B}
$$

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

$$
\omega_{A}=\omega_{B}
$$

All points on a rigid body have the same angular velocity

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

$$
\omega_{A}=\omega_{B}
$$

For particles in circular motion,

$$
v=\omega r
$$

All points on a rigid body have the same angular velocity

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points
$\omega_{A}=\omega_{B}$
For particles in circular motion,

$$
v=\omega r
$$

All points on a rigid body have the same angular velocity

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

$$
\omega_{A}=\omega_{B}
$$

For particles in circular motion,

$$
\begin{aligned}
& v=\omega r \\
& v_{A}<v_{B}
\end{aligned}
$$

All points on a rigid body have the same angular velocity

Why Rotational Motion

The motion of a rigid body is very different than a particle

Pick two points

$$
\omega_{A}=\omega_{B}
$$

For particles in circular motion,

$$
\begin{aligned}
& v=\omega r \\
& v_{A}<v_{B}
\end{aligned}
$$

All points on a rigid body have the same angular velocity

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, α.

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, α.

Angular Acceleration is the rate at which the angular velocity changes.

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, α.

Angular Acceleration is the rate at which the angular velocity changes.

$$
\alpha_{a v}=\frac{\omega_{f}-\omega_{i}}{t_{f}-t_{i}}=\frac{\Delta \omega}{\Delta t} \quad \text { Unit: } \mathrm{rad} / \mathrm{s}^{2}
$$

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, α.

Angular Acceleration is the rate at which the angular velocity changes.

$$
\alpha_{a v}=\frac{\omega_{f}-\omega_{i}}{t_{f}-t_{i}}=\frac{\Delta \omega}{\Delta t} \quad \text { Unit: } \mathrm{rad} / \mathrm{s}^{2}
$$

We'll only do problems with constant angular acceleration
$\Rightarrow \alpha=\alpha_{a v}$

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, α.

Angular Acceleration is the rate at which the angular velocity changes.

$$
\alpha_{a v}=\frac{\omega_{f}-\omega_{i}}{t_{f}-t_{i}}=\frac{\Delta \omega}{\Delta t} \quad \text { Unit: } \mathrm{rad} / \mathrm{s}^{2}
$$

We'll only do problems with constant angular acceleration $\Rightarrow \alpha=\alpha_{a v}$

Direction: If ω increasing: α and ω have same sign

Angular Acceleration

Any change in angular velocity must come from an angular acceleration, α.

Angular Acceleration is the rate at which the angular velocity changes.

$$
\alpha_{a v}=\frac{\omega_{f}-\omega_{i}}{t_{f}-t_{i}}=\frac{\Delta \omega}{\Delta t} \quad \text { Unit: } \mathrm{rad} / \mathrm{s}^{2}
$$

We'll only do problems with constant angular acceleration $\Rightarrow \alpha=\alpha_{a v}$

Direction: If ω increasing: α and ω have same sign
If ω decreasing: α and ω have opposite signs

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\alpha=\frac{\Delta \omega}{\Delta t}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{aligned}
& \alpha=\frac{\Delta \omega}{\Delta t} \\
& \omega=\frac{\Delta \theta}{\Delta t}
\end{aligned}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} &
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} & v=\frac{\Delta x}{\Delta t}
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} & v=\frac{\Delta x}{\Delta t}
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} & v=\frac{\Delta x}{\Delta t} \\
& \downarrow \\
& v_{f}=v_{i}+a \Delta t
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} & v=\frac{\Delta x}{\Delta t} \\
& \downarrow \\
v_{f} & =v_{i}+a \Delta t \\
x_{f} & =x_{i}+v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{gathered}
\alpha=\frac{\Delta \omega}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} \\
v=\frac{\Delta v}{\Delta t} \\
\\
\\
v_{f}=v_{i}+a \Delta t \\
x_{f}=x_{i}+v_{i} \Delta t+\frac{\Delta x}{2} a \Delta t^{2} \\
v_{f}^{2}=v_{i}^{2}+2 a\left(x_{f}-x_{i}\right)
\end{gathered}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} & v=\frac{\Delta x}{\Delta t} \\
& \downarrow \\
& v_{f}=v_{i}+a \Delta t \\
x_{f}=x_{i}+v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \\
& v_{f}^{2}=v_{i}^{2}+2 a\left(x_{f}-x_{i}\right)
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} & v=\frac{\Delta x}{\Delta t} \\
& \downarrow \\
\omega_{f}=\omega_{i}+\alpha \Delta t & v_{f}=v_{i}+a \Delta t \\
& x_{f}=x_{i}+v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \\
& v_{f}^{2}=v_{i}^{2}+2 a\left(x_{f}-x_{i}\right)
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} & v=\frac{\Delta x}{\Delta t} \\
& \\
\omega_{f}=\omega_{i}+\alpha \Delta t & v_{f}=v_{i}+a \Delta t \\
\theta_{f}=\theta_{i}+\omega_{i} \Delta t+\frac{1}{2} \alpha \Delta t^{2} & x_{f}=x_{i}+v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \\
& v_{f}^{2}=v_{i}^{2}+2 a\left(x_{f}-x_{i}\right)
\end{array}
$$

Angular Kinematics

For constant angular acceleration, equations of motion can be derived using what we already know.

$$
\begin{array}{ll}
\alpha=\frac{\Delta \omega}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
\omega=\frac{\Delta \theta}{\Delta t} & v=\frac{\Delta x}{\Delta t} \\
& \\
\omega_{f}=\omega_{i}+\alpha \Delta t & v_{f}=v_{i}+a \Delta t \\
\theta_{f}=\theta_{i}+\omega_{i} \Delta t+\frac{1}{2} \alpha \Delta t^{2} & x_{f}=x_{i}+v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \\
\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha\left(\theta_{f}-\theta_{i}\right) & v_{f}^{2}=v_{i}^{2}+2 a\left(x_{f}-x_{i}\right)
\end{array}
$$

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.
O - the point through which the axis of rotation passes

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.
O - the point through which the axis of rotation passes

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which the axis of rotation passes

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which the axis of rotation passes
r - distance to the force
a.k.a the lever arm

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which the axis of rotation passes
r - distance to the force
a.k.a the lever arm

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which the axis of rotation passes
r - distance to the force
a.k.a the lever arm

When $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{F}}$ are perpendicular:
$\tau=r F$

Torque

Torque, τ - Measures the effectiveness of a force at causing rotation.
$\tau=0 \Rightarrow$ the force causes no rotation.
The location of a force determines the amount of torque.

O - the point through which the axis of rotation passes
r - distance to the force
a.k.a the lever arm

When $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{F}}$ are perpendicular:
$\tau=r F \quad$ Unit: $N \cdot m$

Torque Exercise

For the three situations shown, which is the correct ranking of torque from smallest to largest?

Torque Exercise

For the three situations shown, which is the correct ranking of torque from smallest to largest?

(a) 1,2,3

Torque Exercise

For the three situations shown, which is the correct ranking of torque from smallest to largest?

(a) 1,2,3
(b) $1,3,2$

Torque Exercise

For the three situations shown, which is the correct ranking of torque from smallest to largest?

(a) 1,2,3
(b) $1,3,2$
(c) 2,1,3

Torque Exercise

For the three situations shown, which is the correct ranking of torque from smallest to largest?

(a) 1,2,3
(b) $1,3,2$
(c) $2,1,3$
(d) 2,3,1

Torque Exercise

For the three situations shown, which is the correct ranking of torque from smallest to largest?

(a) 1,2,3
(b) $1,3,2$
(d) 2,3,1
(e) 3,2,1
(c) 2,1,3

Torque Exercise

For the three situations shown, which is the correct ranking of torque from smallest to largest?

(a) 1,2,3
(b) $1,3,2$
(c) $2,1,3$
(d) 2,3,1
(e) 3,2,1

Torque Exercise

For the three situations shown, which is the correct ranking of torque from smallest to largest?

(a) 1,2,3
(b) $1,3,2$
(c) $2,1,3$
(d) 2,3,1
(e) 3,2,1

Torque Sign

Torque can be positive or negative.

Torque Sign

Torque can be positive or negative.

Positive torque \Rightarrow tries to cause counter-clockwise rotation

Torque Sign

Torque can be positive or negative.

Positive torque \Rightarrow tries to cause counter-clockwise rotation
τ_{1} is positive

Torque Sign

Torque can be positive or negative.

Positive torque \Rightarrow tries to cause counter-clockwise rotation
τ_{1} is positive
Negative torque \Rightarrow tries to cause clockwise rotation

Torque Sign

Torque can be positive or negative.

Positive torque \Rightarrow tries to cause counter-clockwise rotation
 τ_{1} is positive

Negative torque \Rightarrow tries to cause clockwise rotation
τ_{2} is negative

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) $25 N$, up

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) 25 N , up
(b) $25 N$, down

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) $25 N$, up
(b) 25 N , down
(c) 50 N , up

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) 25 N , up
(b) $25 N$, down
(c) $50 N$, up
(d) 100 N , up

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) 25 N , up
(b) 25 N , down
(c) $50 N$, up
$\begin{array}{ll}\text { (d) } 100 N \text {, up } & \text { (e) } 100 N \text {, down }\end{array}$

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) $25 N$, up
(b) $25 N$, down
(c) $50 N$, up
(d) $100 N$, up
(e) 100 N , down

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) $25 N$, up
(b) $25 N$, down
(d) $100 N$, up
(e) 100 N , down
(c) $50 N$, up

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) $25 N$, up
(b) $25 N$, down
(d) 100 N , up
(e) 100 N , down
(c) $50 N$, up

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied 4 m to the left of the center to make the net torque zero?

(a) $25 N$, up
(b) $25 N$, down
(c) 50 N , up
(d) 100 N , up
(e) 100 N , down

Torque Sign Exercise

An 8-m long beam which can rotate about its center has an upwards $50-N$ force applied $2 m$ to the right of its center. What force, both magnitude and direction, must be applied $4 m$ to the left of the center to make the net torque zero?

(a) $25 \mathrm{~N}, \mathrm{up}$
(b) $25 N$, down
(c) 50 N , up
(d) 100 N , up
(e) $100 N$, down

