
July 10, Week 6

Thermal Energy 10th July 2014

Today: Finish Chapter 10, Begin Chapter 7, Rotational Motion

Homework #6 due tomorrow
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Example: An 80 kg man jumps onto a spring platform
(k = 18000N/m) going 9m/s. How far does he compress the
spring?

Example: An 80 kg man skydives from a plane 1600m above the
ground. If he lands with a speed of 10m/s (and was essentially at
rest when he jumped), how much work did his parachute do?
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A 10-kg mass sliding to the right, initially with speed 3m/s, is
stopped by friction. How much thermal energy will be created by
this process?

1m/s

No springs or gravity ⇒
1

2
mv2i =

1

2
mv2f +∆Eth

vi = 3m/s, vf = 0 ⇒ 45J = 0 +∆Eth

(a) 10 J

(b) 15 J

(c) 30 J

(d) 45 J

(e) 90 J
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Power - The rate at which energy is used or work is done.

Pav =
∆E

∆t
=

W

∆t
unit: J/s = Watt

In the U. S., unit of work is lb · ft. The unit of power should be the
lb · ft/s, but we use the horsepower (hp).

1hp = 550 lb · ft/s = 746Watt
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Rotational Motion - The spinning or rolling of a rigid body.

Rigid Body - A “big” object that does not change shape while spinning.

Non-negligible size, i.e, can’t be treated as a particle
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All rotation occurs about an axis.

Axis of Rotation - The imaginary line passing through the point (or
points) of zero linear velocity that is perpendicular to the motion.
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−→
v

Perpendicular to motion
⇒ 90◦ to all −→v

The rotational axis is along the z-axis,
i.e., into and out of the page
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axis of rotation passing?

ab
cd e

(a) (b) (c) (d) (e)
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Putting the origin of the coordinate system at the axis of rotation
allows us to still discuss circular motion.

b
r

b Axis of Rotation
Point of Interest

r = distance from axis of rotation
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The motion of a rigid body is very different than a particle

B
rB

ArA

Pick two points

ωA = ωB

All points on a
rigid body have
the same angular
velocity

For particles in
circular motion,
v = ωr

vA < vB

A rigid body has infintely
many linear velocities
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Any change in angular velocity must come from an angular
acceleration, α.

Angular Acceleration is the rate at which the angular velocity
changes.

αav =
ωf − ωi

tf − ti
=

∆ω

∆t
Unit: rad/s2

We’ll only do problems with constant angular acceleration
⇒ α = αav

Direction: If ω increasing: α and ω have same sign

If ω decreasing: α and ω have opposite signs
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For constant angular acceleration, equations of motion can be
derived using what we already know.
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Torque, τ - Measures the effectiveness of a force at causing
rotation.

τ = 0 ⇒ the force causes no rotation.

The location of a force determines the amount of torque.

bO

−→

F

−→
r

O - the point through which
the axis of rotation passes

r - distance to the force
a.k.a the lever arm

When −→
r and

−→

F are perpendicular:
τ = rF Unit: N ·m
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(a) 1,2,3
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For the three situations shown, which is the correct ranking of
torque from smallest to largest?
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1m
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#3

0.75m

4N

(a) 1,2,3 (b) 1,3,2
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For the three situations shown, which is the correct ranking of
torque from smallest to largest?
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1.5N #2
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2N
#3

0.75m
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For the three situations shown, which is the correct ranking of
torque from smallest to largest?
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0.75m
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For the three situations shown, which is the correct ranking of
torque from smallest to largest?
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Thermal Energy 10th July 2014

For the three situations shown, which is the correct ranking of
torque from smallest to largest?

#1

1m

1.5N #2

0.5m

2N
#3

0.75m

4N

(a) 1,2,3 (b) 1,3,2 (c) 2,1,3

(d) 2,3,1 (e) 3,2,1



Torque Exercise

Thermal Energy 10th July 2014

For the three situations shown, which is the correct ranking of
torque from smallest to largest?

#1

1m

1.5N

τ1 = 1.5N ·m

#2

0.5m

2N

τ2 = 1N ·m

#3

0.75m

4N

τ3 = 3N ·m

(a) 1,2,3 (b) 1,3,2 (c) 2,1,3

(d) 2,3,1 (e) 3,2,1



Torque Sign

Thermal Energy 10th July 2014
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Torque can be positive or negative.

bO

−→

F1

−→

F2

−→
r1

−→
r2

Positive torque ⇒ tries
to cause counter-clockwise
rotation
τ1 is positive

Negative torque ⇒ tries to
cause clockwise rotation

τ2 is negative



Torque Sign Exercise

Thermal Energy 10th July 2014

An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

50N
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upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?
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force, both magnitude and direction, must be applied 4m to the left
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O

2m4m

50N

(a) 25N , up (b) 25N , down



Torque Sign Exercise

Thermal Energy 10th July 2014

An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

50N

(a) 25N , up (b) 25N , down (c) 50N , up
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Thermal Energy 10th July 2014

An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

50N

(a) 25N , up (b) 25N , down (c) 50N , up

(d) 100N , up
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An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

50N

(a) 25N , up (b) 25N , down (c) 50N , up

(d) 100N , up (e) 100N , down
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An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

F1 = 50N
F2 = 25N

(a) 25N , up (b) 25N , down (c) 50N , up

(d) 100N , up (e) 100N , down
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An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

Counter-Clockwise
F1 = 50N

F2 = 25N

(a) 25N , up (b) 25N , down (c) 50N , up

(d) 100N , up (e) 100N , down
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An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

F1 = 50N
Counter-Clockwise

F2 = 25N

Clockwise

(a) 25N , up (b) 25N , down (c) 50N , up

(d) 100N , up (e) 100N , down
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An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

F1 = 50N
Counter-Clockwise

F2 = 25N

Clockwise

(a) 25N , up (b) 25N , down (c) 50N , up

(d) 100N , up (e) 100N , down

τnet = τ1 − τ2 = 0
⇒ τ2 = τ1



Torque Sign Exercise

Thermal Energy 10th July 2014

An 8-m long beam which can rotate about its center has an
upwards 50-N force applied 2m to the right of its center. What
force, both magnitude and direction, must be applied 4m to the left
of the center to make the net torque zero?

O

2m4m

F1 = 50N
Counter-Clockwise

F2 = 25N

Clockwise

(a) 25N , up (b) 25N , down (c) 50N , up

(d) 100N , up (e) 100N , down

τnet = τ1 − τ2 = 0
⇒ τ2 = τ1

τ1 = (2m)(50N)
⇒ 100N ·m = (4m)(F2)
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