July 7, Week 6

Today: Chapter 10, Gravitational Potential Energy

Homework \#5 due today at 5:00PM

Office hours today: 1:00-5:00

Test \#5, tomorrow.

Restrictions

This equation is correct only in the situation that:

Restrictions

This equation is correct only in the situation that: $\overrightarrow{\mathbf{F}}$ is constant

Restrictions

This equation is correct only in the situation that:
$\overrightarrow{\mathbf{F}}$ is constant
\vec{d} is a straight line

Restrictions

This equation is correct only in the situation that:
$\overrightarrow{\mathrm{F}}$ is constant
\vec{d} is a straight line
\vec{F} and \vec{d} are in the same direction.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

$$
\phi=\text { angle between } \overrightarrow{\mathrm{F}} \text { and } \overrightarrow{\mathrm{d}}
$$

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

$$
W=F d \cos \phi
$$

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

$$
W=F d \cos \phi
$$

Only correct for Constant force \& Straight-line displacement

Total Work

Work is a scalar quantity.

Total Work

Work is a scalar quantity.

So total work done by a collection of forces is given by the sum of the individual works.

Total Work

Work is a scalar quantity.

So total work done by a collection of forces is given by the sum of the individual works.

$$
W_{\text {total }}=W_{1}+W_{2}+W_{3}+\ldots
$$

Total Work Exercise

A 15 kg mass is lifted 1.5 m at 37° by applying a constant 175 N force also at 37°. What is the total work done?

Total Work Exercise

A 15 kg mass is lifted 1.5 m at 37° by applying a constant 175 N force also at 37°. What is the total work done?
(a) $(175 N)(1.5 m) \cos 37^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$

$$
=209.6 \mathrm{~J}-132.7 \mathrm{~J}=76.9 \mathrm{~J}
$$

Total Work Exercise

A 15 kg mass is lifted 1.5 m at 37° by applying a constant 175 N force also at 37°. What is the total work done?
(a) $(175 N)(1.5 \mathrm{~m}) \cos 37^{\circ}+(147 N)(1.5 \mathrm{~m}) \cos 127^{\circ}$

$$
=209.6 J-132.7 J=76.9 J
$$

(b)
$(175 N)(1.5 m) \cos 0^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$
$=262.5 \mathrm{~J}-132.7 \mathrm{~J}=129.8 \mathrm{~J}$

(a)

$$
-202.00-102.10-120.00
$$

Total Work Exercise

A 15 kg mass is lifted 1.5 m at 37° by applying a constant 175 N force also at 37°. What is the total work done?
(a) $(175 N)(1.5 m) \cos 37^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$

$$
=209.6 J-132.7 J=76.9 J
$$

(b)
$(175 N)(1.5 m) \cos 0^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$ $=262.5 \mathrm{~J}-132.7 \mathrm{~J}=129.8 \mathrm{~J}$

(c) $(175 N)(1.5 m) \cos 37^{\circ}+(147 N)(1.5 \mathrm{~m}) \cos 37^{\circ}$

$$
=209.6 J+176.1 J=385.7 J
$$

Total Work Exercise

A 15 kg mass is lifted 1.5 m at 37° by applying a constant 175 N force also at 37°. What is the total work done?
(a) $(175 N)(1.5 m) \cos 37^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$

$$
=209.6 J-132.7 J=76.9 \mathrm{~J}
$$

(b)
$(175 N)(1.5 m) \cos 0^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$

$$
=262.5 J-132.7 J=129.8 J
$$

(c)

$$
\begin{aligned}
& (175 N)(1.5 \mathrm{~m}) \cos 37^{\circ}+(147 N)(1.5 \mathrm{~m}) \cos 37^{\circ} \\
& \quad=209.6 J+176.1 J=385.7 J \\
& (175 N)(1.5 \mathrm{~m}) \cos 0^{\circ}+(147 N)(1.5 \mathrm{~m}) \cos 37^{\circ} \\
& \quad=262.5 \mathrm{~J}+176.1 \mathrm{~J}=438.6 \mathrm{~J}
\end{aligned}
$$

Total Work Exercise

A 15 kg mass is lifted 1.5 m at 37° by applying a constant 175 N force also at 37°. What is the total work done?
(a) $(175 N)(1.5 m) \cos 37^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$

$$
=209.6 J-132.7 J=76.9 J
$$

(b) $\quad(175 N)(1.5 \mathrm{~m}) \cos 0^{\circ}+(147 N)(1.5 \mathrm{~m}) \cos 127^{\circ}$

$$
=262.5 J-132.7 J=129.8 J
$$

(c) $(175 N)(1.5 m) \cos 37^{\circ}+(147 N)(1.5 m) \cos 37^{\circ}$

$$
=209.6 J+176.1 J=385.7 J
$$

(d) $(175 N)(1.5 m) \cos 0^{\circ}+(147 N)(1.5 m) \cos 37^{\circ}$

$$
=262.5 J+176.1 J=438.6 \mathrm{~J}
$$

(e) Not enough information to determine

Total Work Exercise

A 15 kg mass is lifted 1.5 m at 37° by applying a constant 175 N force also at 37°. What is the total work done?
(a) $(175 N)(1.5 m) \cos 37^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$

$$
=209.6 \mathrm{~J}-132.7 \mathrm{~J}=76.9 \mathrm{~J}
$$

(b) $\quad(175 N)(1.5 m) \cos 0^{\circ}+(147 N)(1.5 m) \cos 127^{\circ}$ $=262.5 \mathrm{~J}-132.7 \mathrm{~J}=129.8 \mathrm{~J}$

(e) Not enough information to determine

Total Work Exercise

A 15 kg mass is lifted 1.5 m at 37° by applying a constant 175 N force also at 37°. What is the total work done?
ϕ is the angle between the force and the displacement

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. It says that work causes a change in speed.

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. It says that work causes a change in speed.

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. It says that work causes a change in speed.

Forces all in a line

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. It says that work causes a change in speed.

Forces all in a line $\Rightarrow W_{\text {total }}=\sum(F d)=\left(\sum F\right) d$

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. It says that work causes a change in speed.

Forces all in a line $\Rightarrow W_{\text {total }}=\sum(F d)=\left(\sum F\right) d$

$$
\sum F=m a \Rightarrow W_{t o t a l}=m a d
$$

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. It says that work causes a change in speed.

Forces all in a line $\Rightarrow W_{\text {total }}=\sum(F d)=\left(\sum F\right) d$
$\sum F=m a \Rightarrow W_{\text {total }}=\operatorname{mad} \quad$ Assume Constant Forces

Work-Energy Theorem

Work-Energy Theorem - Allows us to calculate the physical effect that work has on an object. It says that work causes a change in speed.

Forces all in a line $\Rightarrow W_{\text {total }}=\sum(F d)=\left(\sum F\right) d$
$\sum F=m a \Rightarrow W_{\text {total }}=\operatorname{mad} \quad$ Assume Constant Forces
Using $v_{f}^{2}=v_{i}^{2}+2 a d \Rightarrow W_{\text {total }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$

Work-Energy Theorem II

It can be shown that for constant forces in ANY direction that:

$$
W_{\text {total }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
$$

Work-Energy Theorem II

It can be shown that for constant forces in ANY direction that:

$$
W_{\text {total }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
$$

Kinetic Energy, K - Energy of motion.

$$
K=\frac{1}{2} m v^{2}
$$

Work-Energy Theorem II

It can be shown that for constant forces in ANY direction that:

$$
W_{\text {total }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
$$

Kinetic Energy, K - Energy of motion.

$$
K=\frac{1}{2} m v^{2}
$$

Example: A 15 kg box is lifted, from rest, by applying a 175 N force at 37°. How fast will the box be going after it has moved 1.5 m ?
(Remember that the total work done was 129.8 J.)

Work-Energy Exercise

A 15 kg box has a total of 129.8 J of work done to it (by different forces than before). How fast and in what direction is it going?

Work-Energy Exercise

A 15 kg box has a total of 129.8 J of work done to it (by different forces than before). How fast and in what direction is it going?
(a) $4.16 \mathrm{~m} / \mathrm{s}$ at 0°

Work-Energy Exercise

A 15 kg box has a total of 129.8 J of work done to it (by different forces than before). How fast and in what direction is it going?
(a) $4.16 \mathrm{~m} / \mathrm{s}$ at 0°
(b) $4.16 \mathrm{~m} / \mathrm{s}$ at 37°

Work-Energy Exercise

A 15 kg box has a total of 129.8 J of work done to it (by different forces than before). How fast and in what direction is it going?
(a) $4.16 \mathrm{~m} / \mathrm{s}$ at 0°
(b) $4.16 \mathrm{~m} / \mathrm{s}$ at 37°
(c) $4.16 \mathrm{~m} / \mathrm{s}$ at 90°

Work-Energy Exercise

A 15 kg box has a total of 129.8 J of work done to it (by different forces than before). How fast and in what direction is it going?
(a) $4.16 \mathrm{~m} / \mathrm{s}$ at 0°
(b) $4.16 \mathrm{~m} / \mathrm{s}$ at 37°
(c) $4.16 \mathrm{~m} / \mathrm{s}$ at 90°
(d) $4.16 \mathrm{~m} / \mathrm{s}$ at 180°

Work-Energy Exercise

A 15 kg box has a total of 129.8 J of work done to it (by different forces than before). How fast and in what direction is it going?
(a) $4.16 \mathrm{~m} / \mathrm{s}$ at 0°
(b) $4.16 \mathrm{~m} / \mathrm{s}$ at 37°
(c) $4.16 \mathrm{~m} / \mathrm{s}$ at 90°
(d) $4.16 \mathrm{~m} / \mathrm{s}$ at 180°
(e) Cannot be determined

Work-Energy Exercise

A 15 kg box has a total of 129.8 J of work done to it (by different forces than before). How fast and in what direction is it going?
(a) $4.16 \mathrm{~m} / \mathrm{s}$ at 0°
(b) $4.16 \mathrm{~m} / \mathrm{s}$ at 37°
(c) $4.16 \mathrm{~m} / \mathrm{s}$ at 90°
(d) $4.16 \mathrm{~m} / \mathrm{s}$ at 180°
(e) Cannot be determined

Work-Energy Exercise

A 15 kg box has a total of 129.8 J of work done to it (by different forces than before). How fast and in what direction is it going?

Scalars cannot determine direction

(e) Cannot be determined

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Force

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Force

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Force

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Force

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Forces

To find the work done by a changing force, we have to find the area under a curve.

Constant Force, $W=F d$

Variable Force

For variable forces, it can be shown that the work-energy theorem still holds! $W_{t o t a l}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$

Potential Energy

Some forces do work that can be saved or stored.

Potential Energy

Some forces do work that can be saved or stored.
Potential Energy, U - Saved or stored energy, i.e., energy that can be converted into kinetic energy at a later time.

Most textbooks define potential energy as energy that depends on position. That is true for the examples we do in physics, but not true in every case.

Potential Energy

Some forces do work that can be saved or stored.
Potential Energy, U - Saved or stored energy, i.e., energy that can be converted into kinetic energy at a later time.

Most textbooks define potential energy as energy that depends on position. That is true for the examples we do in physics, but not true in every case.

Conservative Forces - Forces that create potential energy.

Potential Energy

Some forces do work that can be saved or stored.
Potential Energy, U - Saved or stored energy, i.e., energy that can be converted into kinetic energy at a later time.

Most textbooks define potential energy as energy that depends on position. That is true for the examples we do in physics, but not true in every case.

Conservative Forces - Forces that create potential energy.
Conservative forces are rare. Only gravity and the spring force are conservative. (You'll learn two more next term - the electric and magnetic force.) For a force to be conservative, the work it does must be independent of path.

Conservation of Energy

For a conservative force,

$$
W=-\Delta U
$$

Conservation of Energy

For a conservative force,

$$
W=-\Delta U
$$

Conservation of Energy - If only conservative forces do work on an object, its total energy cannot change.

Total Energy, E = the sum of kinetic and potential energy.

$$
E=K+U
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{t o t a l}=W
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{\text {total }}=W
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

$$
W_{\text {total }}=W \curvearrowright-\Delta U
$$

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$

$$
\Rightarrow \Delta K=-\Delta U
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$

$$
\begin{aligned}
\Rightarrow \Delta K & =-\Delta U \\
\Rightarrow K_{f}-K_{i} & =-\left(U_{f}-U_{i}\right) \Rightarrow K_{i}+U_{i}=K_{f}+U_{f}
\end{aligned}
$$

Conservation of Energy II

Proof: If a conservative force is the only force doing work on an object then:

The work-energy Theorem $\Rightarrow W_{\text {total }}=\Delta K$

$$
\begin{aligned}
& \Rightarrow \Delta K=-\Delta U \\
& \Rightarrow K_{f}-K_{i}=-\left(U_{f}-U_{i}\right) \Rightarrow K_{i}+U_{i}=K_{f}+U_{f} \\
& \Rightarrow E_{i}=E_{f}
\end{aligned}
$$

Energy-Conservation Exercise

A block having $15 J$ of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?

$$
\bigcirc U_{g}=15 \mathrm{~J}
$$

Energy-Conservation Exercise

A block having $15 J$ of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?

$$
\bigcirc U_{g}=15 \mathrm{~J}
$$

$$
\bigcirc K=15 \mathrm{~J}
$$

Energy-Conservation Exercise

A block having 15 J of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?
(a) 0 J

$$
\bigcirc U_{g}=15 \mathrm{~J}
$$

$$
\bigcirc K=15 \mathrm{~J}
$$

Energy-Conservation Exercise

A block having 15 J of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?

$$
\begin{array}{ll}
\bigcirc U_{g}=15 J & \text { (a) } 0 J \\
& \text { (b) } 7.5 J \\
\bigcirc K=15 J &
\end{array}
$$

Energy-Conservation Exercise

A block having 15 J of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?
(a) 0 J
$\bigcirc U_{g}=15 J$
(b) 7.5 J
(c) 15 J

$$
\bigcirc K=15 \mathrm{~J}
$$

Energy-Conservation Exercise

A block having 15 J of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?
(a) 0 J

$$
\bigcirc U_{g}=15 \mathrm{~J}
$$

(b) 7.5 J
(c) 15 J

$$
\bigcirc K=15 \mathrm{~J}
$$

(d) 30 J

Energy-Conservation Exercise

A block having 15 J of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?
(a) 0 J

$$
\bigcirc U_{g}=15 \mathrm{~J}
$$

(b) 7.5 J
(c) 15 J

$$
\bigcirc K=15 J
$$

(d) 30 J
(e) Cannot be determined

Energy-Conservation Exercise

A block having 15 J of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?

$$
\begin{array}{ll}
\bigcirc U_{g}=15 J & \text { (a) } 0 J \\
& \text { (b) } 7.5 J \\
\bigcirc K=15 J & \text { (c) } 15 J \\
& \text { (d) } 30 J
\end{array}
$$

(e) Cannot be determined

Energy-Conservation Exercise

A block having 15 J of gravitational potential energy is dropped from rest. When the block hits the ground, it has 15 J of kinetic energy. If gravity is the only force acting on the block, how much potential energy does the block have when it hits the ground?

$$
\bigcirc U_{g}=15 \mathrm{~J} \quad \begin{array}{ll}
(\mathbf{a}) 0 \mathrm{~J} & \\
& \begin{array}{l}
K_{i}+U_{i}=K_{f}+U_{f} \Rightarrow \\
\\
\\
\\
\\
\end{array}+15 \mathrm{~J}=15 \mathrm{~J}+U_{f}
\end{array}
$$

$$
\bigcirc K=15 \mathrm{~J}
$$

