July 3, Week 5

Today: Finish Chapter 9, Begin Chapter 10,Work

No Office Hours on Friday.

Homework Assignment \#5 - Due Monday, July 7. (Homework assignment \#6 will be due Friday, July 11)

Test \#5 on Tuesday, July 8

There will be a reading quiz due Monday.

Using Conservation of Momentum II

Before

After

$$
m_{A} \overrightarrow{\mathbf{V}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=m_{A} \overrightarrow{\mathbf{V}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}
$$

Using Conservation of Momentum II

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}
$$

Component Form:

Using Conservation of Momentum II

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}
$$

Component Form:

$$
m_{A}\left(v_{A x}\right)_{i}+m_{B}\left(v_{B x}\right)_{i}=m_{A}\left(v_{A x}\right)_{f}+m_{B}\left(v_{B x}\right)_{f}
$$

Using Conservation of Momentum II

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}
$$

Component Form:

$$
\begin{aligned}
& m_{A}\left(v_{A x}\right)_{i}+m_{B}\left(v_{B x}\right)_{i}=m_{A}\left(v_{A x}\right)_{f}+m_{B}\left(v_{B x}\right)_{f} \\
& m_{A}\left(v_{A y}\right)_{i}+m_{B}\left(v_{B y}\right)_{i}=m_{A}\left(v_{A y}\right)_{f}+m_{B}\left(v_{B y}\right)_{f}
\end{aligned}
$$

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Before

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Before

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Completely-Inelastic Collisions

When the colliding objects stick together, the collision is called completely inelastic.

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=\left(m_{A}+m_{B}\right) \overrightarrow{\mathbf{v}}_{f}
$$

Component Form: $m_{A}\left(v_{A x}\right)_{i}+m_{B}\left(v_{B x}\right)_{i}=\left(m_{A}+m_{B}\right)\left(v_{x}\right)_{f}$

$$
m_{A}\left(v_{A y}\right)_{i}+m_{B}\left(v_{B y}\right)_{i}=\left(m_{A}+m_{B}\right)\left(v_{y}\right)_{f}
$$

Conservation Exercise IV

A $1-\mathrm{kg}$ mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

Before

Conservation Exercise IV

A $1-\mathrm{kg}$ mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

Conservation Exercise IV

A $1-\mathrm{kg}$ mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

Before
(a) $(5 / 3) \mathrm{m} / \mathrm{s}$

Conservation Exercise IV

A $1-\mathrm{kg}$ mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

(a) $(5 / 3) \mathrm{m} / \mathrm{s}$
(b) $-(5 / 3) \mathrm{m} / \mathrm{s}$

Conservation Exercise IV

A $1-\mathrm{kg}$ mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

(a) $(5 / 3) \mathrm{m} / \mathrm{s}$
(b) $-(5 / 3) \mathrm{m} / \mathrm{s}$
(c) $-1 \mathrm{~m} / \mathrm{s}$

Conservation Exercise IV

A $1-\mathrm{kg}$ mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

(a) $(5 / 3) \mathrm{m} / \mathrm{s}$
(b) $-(5 / 3) \mathrm{m} / \mathrm{s}$
(c) $-1 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$

Conservation Exercise IV

A 1-kg mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

(a) $(5 / 3) \mathrm{m} / \mathrm{s}$
(b) $-(5 / 3) \mathrm{m} / \mathrm{s}$
(C) $-1 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$
(e) $-3 \mathrm{~m} / \mathrm{s}$

Conservation Exercise IV

A 1-kg mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

(a) $(5 / 3) \mathrm{m} / \mathrm{s}$
(b) $-(5 / 3) \mathrm{m} / \mathrm{s}$
(C) $-1 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$
(e) $-3 \mathrm{~m} / \mathrm{s}$

Conservation Exercise IV

A 1-kg mass sliding to the right with speed $1 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass going to the left at $2 \mathrm{~m} / \mathrm{s}$. If the masses stick to each other, how fast is the combo going after?

Conservation: $(1 \mathrm{~kg})(1 \mathrm{~m} / \mathrm{s})+(2 \mathrm{~kg})(-2 \mathrm{~m} / \mathrm{s})=(1 \mathrm{~kg}+2 \mathrm{~kg})\left(v_{x}\right)_{f}$ $(1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})-(4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})=(3 \mathrm{~kg})\left(v_{x}\right)_{f} \Rightarrow-(3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})=(3 \mathrm{~kg})\left(v_{x}\right)_{f}$

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

Before

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

(a) $10 \mathrm{~m} / \mathrm{s}$ at 225°
(b) $20 \mathrm{~m} / \mathrm{s}$ at 225°
(c) $40 \mathrm{~m} / \mathrm{s}$ at 225°

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

(a) $10 \mathrm{~m} / \mathrm{s}$ at 225°
(b) $20 \mathrm{~m} / \mathrm{s}$ at 225°
(c) $40 \mathrm{~m} / \mathrm{s}$ at 225°
(d) $10 \mathrm{~m} / \mathrm{s}$ at 135°

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

(a) $10 \mathrm{~m} / \mathrm{s}$ at 225°
(b) $20 \mathrm{~m} / \mathrm{s}$ at 225°
(c) $40 \mathrm{~m} / \mathrm{s}$ at 225°
(d) $10 \mathrm{~m} / \mathrm{s}$ at 135°
(e) $40 \mathrm{~m} / \mathrm{s}$ at 135°

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

(a) $10 \mathrm{~m} / \mathrm{s}$ at 225°
(b) $20 \mathrm{~m} / \mathrm{s}$ at 225°
(c) $40 \mathrm{~m} / \mathrm{s}$ at 225°
(d) $10 \mathrm{~m} / \mathrm{s}$ at 135°
(e) $40 \mathrm{~m} / \mathrm{s}$ at 135°

2D-Conservation Exercise

A 6 kg box-shaped firecracker explodes into two unequal pieces. If the first piece of mass 2 kg has velocity $20 \mathrm{~m} / \mathrm{s}$ at 45°, what speed and direction must the other piece have?

(a) $10 \mathrm{~m} / \mathrm{s}$ at 225°
$0=m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f} \Rightarrow \overrightarrow{\mathbf{v}}_{B f}=-\left(\frac{m_{A}}{m_{B}}\right) \overrightarrow{\mathbf{v}}_{A f}=-\left(\frac{2}{4}\right) \overrightarrow{\mathbf{v}}_{A f}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

(a) $9 \mathrm{~m} / \mathrm{s}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

(a) $9 \mathrm{~m} / \mathrm{s}$
(b) $\sqrt{45} \mathrm{~m} / \mathrm{s}=6.7 \mathrm{~m} / \mathrm{s}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

(a) $9 \mathrm{~m} / \mathrm{s}$
(b) $\sqrt{45} \mathrm{~m} / \mathrm{s}=6.7 \mathrm{~m} / \mathrm{s}$
(c) $3 \mathrm{~m} / \mathrm{s}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

(a) $9 \mathrm{~m} / \mathrm{s}$
(b) $\sqrt{45} \mathrm{~m} / \mathrm{s}=6.7 \mathrm{~m} / \mathrm{s}$
(c) $3 \mathrm{~m} / \mathrm{s}$
(d) $\sqrt{5} \mathrm{~m} / \mathrm{s}=2.236 \mathrm{~m} / \mathrm{s}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

(a) $9 \mathrm{~m} / \mathrm{s}$
(b) $\sqrt{45} \mathrm{~m} / \mathrm{s}=6.7 \mathrm{~m} / \mathrm{s}$
(c) $3 \mathrm{~m} / \mathrm{s}$
(d) $\sqrt{5} \mathrm{~m} / \mathrm{s}=2.236 \mathrm{~m} / \mathrm{s}$
(e) $1 \mathrm{~m} / \mathrm{s}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

(a) $9 \mathrm{~m} / \mathrm{s}$
(b) $\sqrt{45} \mathrm{~m} / \mathrm{s}=6.7 \mathrm{~m} / \mathrm{s}$
(c) $3 \mathrm{~m} / \mathrm{s}$
(d) $\sqrt{5} \mathrm{~m} / \mathrm{s}=2.236 \mathrm{~m} / \mathrm{s}$
(e) $1 \mathrm{~m} / \mathrm{s}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

$$
\text { (d) } \sqrt{5} \mathrm{~m} / \mathrm{s}=2.236 \mathrm{~m} / \mathrm{s}
$$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

$$
\text { (d) } \sqrt{5} \mathrm{~m} / \mathrm{s}=2.236 \mathrm{~m} / \mathrm{s}
$$

$$
3 \mathrm{~m} / \mathrm{s} \quad\left(v_{A x}\right)_{i}=3 \mathrm{~m} / \mathrm{s} \quad\left(v_{A y}\right)_{i}=0
$$

$$
\left(v_{B x}\right)_{i}=0 \quad\left(v_{B y}\right)_{i}=3 \mathrm{~m} / \mathrm{s}
$$

x-Component: $(1 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s})+0=(3 \mathrm{~kg})\left(v_{x}\right)_{f} \Rightarrow\left(v_{x}\right)_{f}=1 \mathrm{~m} / \mathrm{s}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

$$
\text { (d) } \sqrt{5} \mathrm{~m} / \mathrm{s}=2.236 \mathrm{~m} / \mathrm{s}
$$

$$
3 \mathrm{~m} / \mathrm{s} \quad\left(v_{A x}\right)_{i}=3 \mathrm{~m} / \mathrm{s} \quad\left(v_{A y}\right)_{i}=0
$$

$$
\left(v_{B x}\right)_{i}=0
$$

$$
\left(v_{B y}\right)_{i}=3 \mathrm{~m} / \mathrm{s}
$$

2 kg
x-Component: $(1 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s})+0=(3 \mathrm{~kg})\left(v_{x}\right)_{f} \Rightarrow\left(v_{x}\right)_{f}=1 \mathrm{~m} / \mathrm{s}$
y-Component: $0+(2 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s})=(3 \mathrm{~kg})\left(v_{y}\right)_{f} \Rightarrow\left(v_{y}\right)_{f}=2 \mathrm{~m} / \mathrm{s}$

2D Exercise II

A block with $M_{A}=1 \mathrm{~kg}$ and velocity $3 \mathrm{~m} / \mathrm{s}$ to the right has a perfectly inelastic collision with $M_{B}=2 \mathrm{~kg}$ that has velocity $3 \mathrm{~m} / \mathrm{s}$ up. How fast must the masses be going the instant after their collision?

$$
\text { (d) } \sqrt{5} \mathrm{~m} / \mathrm{s}=2.236 \mathrm{~m} / \mathrm{s}
$$

$$
3 \mathrm{~m} / \mathrm{s} \quad\left(v_{A x}\right)_{i}=3 \mathrm{~m} / \mathrm{s} \quad\left(v_{A y}\right)_{i}=0
$$

$$
\left(v_{B x}\right)_{i}=0
$$

$$
\left(v_{B y}\right)_{i}=3 \mathrm{~m} / \mathrm{s}
$$

2 kg
x-Component: $(1 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s})+0=(3 \mathrm{~kg})\left(v_{x}\right)_{f} \Rightarrow\left(v_{x}\right)_{f}=1 \mathrm{~m} / \mathrm{s}$
y-Component: $0+(2 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s})=(3 \mathrm{~kg})\left(v_{y}\right)_{f} \Rightarrow\left(v_{y}\right)_{f}=2 \mathrm{~m} / \mathrm{s}$

$$
v_{f}=\sqrt{\left(v_{x}\right)_{f}^{2}+\left(v_{y}\right)_{f}^{2}}=\sqrt{1 m^{2} / s^{2}+4 m^{2} / s^{2}}
$$

Work and Energy

Energy - The ability to do work or results from work being done to something.

Work and Energy

Energy - The ability to do work or results from work being done to something.

Work - a measure of much effort goes into causing motion.

Work and Energy

Energy - The ability to do work or results from work being done to something.

Work - a measure of much effort goes into causing motion.

Work and Energy

Energy - The ability to do work or results from work being done to something.

Work - a measure of much effort goes into causing motion.

Work and Energy

Energy - The ability to do work or results from work being done to something.

Work - a measure of much effort goes into causing motion.

Work and Energy

Energy - The ability to do work or results from work being done to something.

Work - a measure of much effort goes into causing motion.
$\vec{d}=$ displacement
= distance and
direction traveled.

Work and Energy

Energy - The ability to do work or results from work being done to something.

Work - a measure of much effort goes into causing motion.
$\overrightarrow{\mathrm{d}}=$ displacement \quad Work done by the force: $W=F d$
= distance and
direction traveled.

Work and Energy

Energy - The ability to do work or results from work being done to something.

Work - a measure of much effort goes into causing motion.
$\overrightarrow{\mathrm{d}}=$ displacement \quad Work done by the force: $W=F d$
= distance and direction traveled.

Unit: $N \cdot m=k g \cdot m^{2} / s^{2}=J$

Restrictions

This equation is correct only in the situation that:

Restrictions

This equation is correct only in the situation that: $\overrightarrow{\mathbf{F}}$ is constant

Restrictions

This equation is correct only in the situation that:
$\overrightarrow{\mathrm{F}}$ is constant
\vec{d} is a straight line

Restrictions

This equation is correct only in the situation that:
$\overrightarrow{\mathrm{F}}$ is constant
\vec{d} is a straight line
\vec{F} and \vec{d} are in the same direction.

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?

(a) 0 J

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?

(a) 0 J
(b) 0.5 J

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?

(a) 0 J
(b) 0.5 J
(c) 5 J

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?

(a) 0 J
(b) 0.5 J
(c) 5 J
0.5 m
(d) 10 J

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?
(a) 0 J
(b) 0.5 J
(c) 5 J
0.5 m
(d) 10 J
(e) Not enough information to determine

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?

(a) 0 J
(b) 0.5 J
(c) 5 J
0.5 m
(d) 10 J
(e) Not enough information to determine

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?

$$
\sum F_{y}=m a_{y} \Rightarrow
$$

$$
T-10 N=0 \Rightarrow T=10 N
$$

$$
W=T d=(10 N)(0.5 \mathrm{~m})
$$

$$
\text { (c) } 5 \mathrm{~J}
$$

Work Exercise I

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by the tension force?

$$
\begin{aligned}
& \sum F_{y}=m a_{y} \Rightarrow \\
& T-10 N=0 \Rightarrow T=10 \mathrm{~N} \\
& W=T d=(10 \mathrm{~N})(0.5 \mathrm{~m}) \\
& \text { (c) } 5 \mathrm{~J}
\end{aligned}
$$

Note: $W=$ work and $w=$ weight

Perpendicular Force

A force perpendicular to the displacement does no work.

Perpendicular Force

A force perpendicular to the displacement does no work.

Perpendicular Force

A force perpendicular to the displacement does no work.

\vec{F}

Perpendicular Force

A force perpendicular to the displacement does no work.

Perpendicular Force

A force perpendicular to the displacement does no work.

This force cannot be responsible for this motion $\Rightarrow W=0$

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

$$
\phi=\text { angle between } \overrightarrow{\mathrm{F}} \text { and } \overrightarrow{\mathrm{d}}
$$

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

$$
W=F d \cos \phi
$$

Arbitrary Direction

Only the component of the force parallel to the displacement does work.

$$
W=F d \cos \phi
$$

Only correct for Constant force \& Straight-line displacement

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

(a) 0 J

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

(a) 0 J
(b) 5 J

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

(a) 0 J
(b) 5 J
(c) $5 \mathrm{~J} \cos 180^{\circ}=-5 \mathrm{~J}$

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

(a) 0 J
(b) 5 J
(c) $5 \mathrm{~J} \cos 180^{\circ}=-5 \mathrm{~J}$
0.5 m
(d) $10 \mathrm{~J} \cos 180^{\circ}=-10 \mathrm{~J}$

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

(a) 0 J
(b) 5 J
(c) $5 \mathrm{~J} \cos 180^{\circ}=-5 \mathrm{~J}$
(d) $10 \mathrm{~J} \cos 180^{\circ}=-10 \mathrm{~J}$
(e) Not enough information to determine

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

(a) 0 J
(b) 5 J
(c) $5 J \cos 180^{\circ}=-5 J$
0.5 m
(d) $10 \mathrm{~J} \cos 180^{\circ}=-10 \mathrm{~J}$
(e) Not enough information to determine

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

$$
W=F d \cos \phi
$$

$$
\text { (c) } 5 J \cos 180^{\circ}=-5 J
$$

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

$$
\begin{aligned}
& W=F d \cos \phi \\
& \Rightarrow W=(10 N)(0.5 \mathrm{~m}) \cos 180^{\circ}
\end{aligned}
$$

$$
\text { (c) } 5 J \cos 180^{\circ}=-5 J
$$

Work Exercise II

A 10 N block is pulled 0.5 m upwards with constant speed by a massless rope. How much work is done by gravity?

