July 2, Week 5

Today: Chapter 9, Conservation of Momentum

No Office Hours on Friday.

Homework Assignment \#5 - Due Monday, July 7. (Homework assignment \#6 will be due Friday, July 11)

Test \#5 on Tuesday, July 8

There will be a reading quiz due Monday.

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

$$
\begin{aligned}
& F \quad F_{a v} \text { is a constant force }
\end{aligned}
$$

$$
\begin{aligned}
& J=F_{a v} \Delta t=F_{a v}\left(t_{f}-t_{i}\right)
\end{aligned}
$$

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse is the area under the curve

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse is the area under the curve

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse is the area under the curve

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Impulse is the area under the curve

Impulse-Momentum Theorem - Variable Forces

The Impulse-Momentum Theorem also holds for non-constant forces!

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force
A 5 - kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force
A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise I

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s . What impulse is imparted?

Variable-Force Exercise II

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after $1 s$?

Variable-Force Exercise II

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after $1 s$?

Variable-Force Exercise II

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after $1 s$?

Variable-Force Exercise II

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after $1 s$?

Variable-Force Exercise II

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after $1 s$?

Variable-Force Exercise II

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after $1 s$?

Variable-Force Exercise II

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after $1 s$?

Variable-Force Exercise II

Impulse-Momentum Theorem: $J=\Delta p$ for any force

A $5-\mathrm{kg}$ block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after $1 s$?

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

$\overrightarrow{\mathbf{F}}_{A \text { on } B}=$ Force on B due to A

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

$\overrightarrow{\mathbf{F}}_{A \text { on } B}=$ Force on B due to A
$\overrightarrow{\mathbf{F}}_{B \text { on } A}=$ Force on A due to B

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{A \text { on } B}=\text { Force on } B \text { due to } A \\
& \overrightarrow{\mathbf{F}}_{B \text { on } A}=\text { Force on } A \text { due to } B \\
& \text { 3rd Law: } \overrightarrow{\mathbf{F}}_{B \text { on } A}=-\overrightarrow{\mathbf{F}}_{A \text { on } B}
\end{aligned}
$$

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{A \text { on } B}=\text { Force on } B \text { due to } A \\
& \overrightarrow{\mathbf{F}}_{B \text { on } A}=\text { Force on } A \text { due to } B \\
& \text { 3rd Law: } \overrightarrow{\mathbf{F}}_{B \text { on } A}=-\overrightarrow{\mathbf{F}}_{A \text { on } B} \\
& \overrightarrow{\mathbf{F}}_{B \text { on } A}+\overrightarrow{\mathbf{F}}_{A \text { on } B}=0
\end{aligned}
$$

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{A \text { on } B}=\text { Force on } B \text { due to } A \\
& \overrightarrow{\mathbf{F}}_{B \text { on } A}=\text { Force on } A \text { due to } B \\
& \text { 3rd Law: } \overrightarrow{\mathbf{F}}_{B \text { on } A}=-\overrightarrow{\mathbf{F}}_{A \text { on } B} \\
& \overrightarrow{\mathbf{F}}_{B \text { on } A}+\overrightarrow{\mathbf{F}}_{A \text { on } B}=0
\end{aligned}
$$

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

$$
\frac{\Delta}{\Delta t}\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0
$$

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

$$
\frac{\Delta}{\Delta t}\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \Rightarrow \Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0
$$

Conservation of Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

$$
\frac{\Delta}{\Delta t}\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \Rightarrow \Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0
$$

The total momentum can't change

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Internal Forces - Forces inside the system. Always come in action/reaction pairs

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Internal Forces - Forces inside the system. Always come in action/reaction pairs

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

Internal Forces - Forces inside the system. Always come in action/reaction pairs

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

External forces

Internal Forces - Forces inside the system. Always come in action/reaction pairs

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

External forces

Internal Forces - Forces inside the system. Always come in action/reaction pairs

External Forces - Forces from outside the system

Conservation of Momentum II

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.

External forces

Internal Forces - Forces inside the system. Always come in action/reaction pairs

External Forces - Forces from outside the system

Impulse Hypothesis - During the small times that a collision lasts, the external forces are small compared to the internal forces so we can ignore them

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

B

A

Before

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathrm{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathrm{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before
After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}
$$

After
$m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}$

Using Conservation of Momentum

$\Delta\left(\overrightarrow{\mathbf{p}}_{A}+\overrightarrow{\mathbf{p}}_{B}\right)=0 \Rightarrow$ the total momentum of the system can't change.

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}
$$

Using Conservation of Momentum II

Before

After

$$
m_{A} \overrightarrow{\mathbf{V}}_{A i}+m_{B} \overrightarrow{\mathbf{V}}_{B i}=m_{A} \overrightarrow{\mathbf{V}}_{A f}+m_{B} \overrightarrow{\mathbf{V}}_{B f}
$$

Using Conservation of Momentum II

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}
$$

Component Form:

Using Conservation of Momentum II

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}
$$

Component Form:

$$
m_{A}\left(v_{A x}\right)_{i}+m_{B}\left(v_{B x}\right)_{i}=m_{A}\left(v_{A x}\right)_{f}+m_{B}\left(v_{B x}\right)_{f}
$$

Using Conservation of Momentum II

Before

After

$$
m_{A} \overrightarrow{\mathbf{v}}_{A i}+m_{B} \overrightarrow{\mathbf{v}}_{B i}=m_{A} \overrightarrow{\mathbf{v}}_{A f}+m_{B} \overrightarrow{\mathbf{v}}_{B f}
$$

Component Form:

$$
\begin{aligned}
& m_{A}\left(v_{A x}\right)_{i}+m_{B}\left(v_{B x}\right)_{i}=m_{A}\left(v_{A x}\right)_{f}+m_{B}\left(v_{B x}\right)_{f} \\
& m_{A}\left(v_{A y}\right)_{i}+m_{B}\left(v_{B y}\right)_{i}=m_{A}\left(v_{A y}\right)_{f}+m_{B}\left(v_{B y}\right)_{f}
\end{aligned}
$$

Conservation Exercise I

A 1-kg mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

Conservation Exercise I

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

After

Conservation Exercise I

A 1-kg mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

After
(a) $0 \mathrm{~m} / \mathrm{s}$

Conservation Exercise I

A 1-kg mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$

Conservation Exercise I

A 1-kg mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$

Conservation Exercise I

A 1-kg mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before
(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$

Conservation Exercise I

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before
(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$

Conservation Exercise I

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before
(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(C) $2 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$
(e) $4 \mathrm{~m} / \mathrm{s}$

Conservation Exercise I

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with another $1-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$
(e) $4 \mathrm{~m} / \mathrm{s}$

Conservation: $(1 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})+0=0+(1 \mathrm{~kg})\left(v_{B x}\right)_{f} \Rightarrow\left(v_{B x}\right)_{f}=2 \mathrm{~m} / \mathrm{s}$

Conservation Exercise II

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

Conservation Exercise II

A 1-kg mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $2-\mathrm{kg}$ mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

After

Conservation Exercise II

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a 2 - kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

After
(a) $0 \mathrm{~m} / \mathrm{s}$

Conservation Exercise II

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a 2 - kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

After
(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$

Conservation Exercise II

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a 2 - kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$

Conservation Exercise II

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a 2 - kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Before

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$

Conservation Exercise II

A 1-kg mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a 2 - kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Conservation Exercise II

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a 2 - kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

Conservation Exercise II

A $1-\mathrm{kg}$ mass sliding to the right with speed $2 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a 2 - kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$
(e) $4 \mathrm{~m} / \mathrm{s}$

Conservation: $(1 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})+0=0+(2 \mathrm{~kg})\left(v_{B x}\right)_{f} \Rightarrow\left(v_{B x}\right)_{f}=1 \mathrm{~m} / \mathrm{s}$

Conservation Exercise III

A 1-kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

Before

Conservation Exercise III

A 1-kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

Before

After

Conservation Exercise III

A 1-kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

Before

After
(a) $0 \mathrm{~m} / \mathrm{s}$

Conservation Exercise III

A 1-kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

Before

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $0.5 \mathrm{~m} / \mathrm{s}$

Conservation Exercise III

A 1-kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

Before

After
(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $0.5 \mathrm{~m} / \mathrm{s}$
(c) $1 \mathrm{~m} / \mathrm{s}$

Conservation Exercise III

A 1-kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

Before

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $0.5 \mathrm{~m} / \mathrm{s}$
(c) $1 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$

Conservation Exercise III

A 1-kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $0.5 \mathrm{~m} / \mathrm{s}$
(c) $1 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$
(e) $4 \mathrm{~m} / \mathrm{s}$

Conservation Exercise III

A 1-kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $0.5 \mathrm{~m} / \mathrm{s}$
(c) $1 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$
(e) $4 \mathrm{~m} / \mathrm{s}$

Conservation Exercise III

A 1- kg mass sliding to the right with speed $3 \mathrm{~m} / \mathrm{s}$ on a frictionless floor collides with a $4-\mathrm{kg}$ mass at rest. If the first mass bounces back with a speed of $1 \mathrm{~m} / \mathrm{s}$, how fast must the second mass be going?

(a) $0 \mathrm{~m} / \mathrm{s}$
(b) $0.5 \mathrm{~m} / \mathrm{s}$
(d) $3 \mathrm{~m} / \mathrm{s}$
(e) $4 \mathrm{~m} / \mathrm{s}$
(c) $1 \mathrm{~m} / \mathrm{s}$

Conservation: $(1 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s})+0=(1 \mathrm{~kg})(-1 \mathrm{~m} / \mathrm{s})+(4 \mathrm{~kg})\left(v_{B x}\right)_{f}$
$(3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})=-(1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})+(4 \mathrm{~kg})\left(v_{B x}\right)_{f} \Rightarrow(4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})=(4 \mathrm{~kg})\left(v_{B x}\right)_{f}$

