# July 2, Week 5

Today: Chapter 9, Conservation of Momentum

No Office Hours on Friday.

Homework Assignment #5 - Due Monday, July 7. (Homework assignment #6 will be due Friday, July 11)

Test #5 on Tuesday, July 8

There will be a reading quiz due Monday.

The Impulse-Momentum Theorem also holds for non-constant forces!

The Impulse-Momentum Theorem also holds for non-constant forces!



The Impulse-Momentum Theorem also holds for non-constant forces!



The Impulse-Momentum Theorem also holds for non-constant forces!



The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

The Impulse-Momentum Theorem also holds for non-constant forces!





$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

Impulse is the area under the curve

The Impulse-Momentum Theorem also holds for non-constant forces!



$$J = F_{av}\Delta t = F_{av}\left(t_f - t_i\right)$$

Impulse is the area under the curve



It is beyond the scope of this course but  $J = \Delta p$ still!

Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J=\Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J=\Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block for 1 s. What impulse is imparted?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after 1 s?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after 1 s?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after 1 s?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after 1 s?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after 1 s?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after 1 s?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after 1 s?



Impulse-Momentum Theorem:  $J = \Delta p$  for any force

$$J = \Delta p$$
 for any force

A 5-kg block is sitting on a horizontal, frictionless floor. The force shown is applied to the block, how fast is it going after 1 s?



<u>Conservation of Momentum</u> - In the absence of external forces, the total momentum of the system cannot change.

<u>Conservation of Momentum</u> - In the absence of external forces, the total momentum of the system cannot change.



Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



 $\overrightarrow{\mathbf{F}}_{A \text{ on } B} =$ Force on B due to A

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



$$\overrightarrow{\mathbf{F}}_{A \text{ on } B} =$$
Force on  $B$  due to  $A$ 

$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} =$$
Force on  $A$  due to  $B$ 



$$\overrightarrow{\mathbf{F}}_{A \text{ on } B} =$$
Force on  $B$  due to  $A$ 

$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} =$$
Force on  $A$  due to  $B$ 

3rd Law: 
$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} = -\overrightarrow{\mathbf{F}}_{A \text{ on } B}$$



$$\overrightarrow{\mathbf{F}}_{A \text{ on } B} =$$
Force on  $B$  due to  $A$ 

$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} = \mathbf{Force} \text{ on } A \text{ due to } B$$

3rd Law: 
$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} = -\overrightarrow{\mathbf{F}}_{A \text{ on } B}$$

$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} + \overrightarrow{\mathbf{F}}_{A \text{ on } B} = 0$$



$$\overrightarrow{\mathbf{F}}_{A \text{ on } B} =$$
Force on  $B$  due to  $A$ 

$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} =$$
Force on  $A$  due to  $B$ 

3rd Law: 
$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} = -\overrightarrow{\mathbf{F}}_{A \text{ on } B}$$

$$\overrightarrow{\mathbf{F}}_{B \text{ on } A} + \overrightarrow{\mathbf{F}}_{A \text{ on } B} = 0$$

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



Momentum

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



Momentum





Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



The *total* momentum can't change

<u>Conservation of Momentum</u> - In the absence of external forces, the total momentum of the system cannot change.



<u>Conservation of Momentum</u> - In the absence of external forces, the total momentum of the system cannot change.



Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



Internal Forces - Forces inside the system. Always come in action/reaction pairs

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



Internal Forces - Forces inside the system. Always come in action/reaction pairs

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



Internal Forces - Forces inside the system. Always come in action/reaction pairs

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



Internal Forces - Forces inside the system. Always come in action/reaction pairs

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.



Internal forces

Internal Forces - Forces inside the system. Always come in action/reaction pairs

<u>External Forces</u> - Forces from outside the system

Conservation of Momentum - In the absence of external forces, the total momentum of the system cannot change.





Internal Forces - Forces inside the system. Always come in action/reaction pairs

<u>External Forces</u> - Forces from outside the system

Impulse Hypothesis - During the small times that a collision lasts, the external forces are small compared to the internal forces so we can ignore them

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



Before

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.

B



Before

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



Before

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



Before

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



Before

$$m_A \overrightarrow{\mathbf{v}}_{Ai} + m_B \overrightarrow{\mathbf{v}}_{Bi}$$

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



Before

$$m_A \overrightarrow{\mathbf{v}}_{Ai} + m_B \overrightarrow{\mathbf{v}}_{Bi}$$

After

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



$$m_A \overrightarrow{\mathbf{v}}_{Ai} + m_B \overrightarrow{\mathbf{v}}_{Bi}$$

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



 $m_A \overrightarrow{\mathbf{v}}_{Ai} + m_B \overrightarrow{\mathbf{v}}_{Bi}$ 

 $m_A \overrightarrow{\mathbf{v}}_{Ai} + m_B \overrightarrow{\mathbf{v}}_{Bi}$ 

 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.



 $\Delta \left( \overrightarrow{\mathbf{p}}_A + \overrightarrow{\mathbf{p}}_B \right) = 0 \Rightarrow$  the total momentum of the system can't change.







$$m_A \overrightarrow{\mathbf{v}}_{Ai} + m_B \overrightarrow{\mathbf{v}}_{Bi} = m_A \overrightarrow{\mathbf{v}}_{Af} + m_B \overrightarrow{\mathbf{v}}_{Bf}$$

# Component Form:



$$m_A \overrightarrow{\mathbf{v}}_{Ai} + m_B \overrightarrow{\mathbf{v}}_{Bi} = m_A \overrightarrow{\mathbf{v}}_{Af} + m_B \overrightarrow{\mathbf{v}}_{Bf}$$

### Component Form:

$$m_A (v_{Ax})_i + m_B (v_{Bx})_i = m_A (v_{Ax})_f + m_B (v_{Bx})_f$$



$$m_A \overrightarrow{\mathbf{v}}_{Ai} + m_B \overrightarrow{\mathbf{v}}_{Bi} = m_A \overrightarrow{\mathbf{v}}_{Af} + m_B \overrightarrow{\mathbf{v}}_{Bf}$$

### Component Form:

$$m_A (v_{Ax})_i + m_B (v_{Bx})_i = m_A (v_{Ax})_f + m_B (v_{Bx})_f$$
  
 $m_A (v_{Ay})_i + m_B (v_{By})_i = m_A (v_{Ay})_f + m_B (v_{By})_f$ 

Momentum

### **Conservation Exercise I**

A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



### **Conservation Exercise I**

A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



#### **Conservation Exercise I**

A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



(a)  $0 \, m/s$ 

A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



Momentum

A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with another 1-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



Conservation:  $(1 kg)(2 m/s) + 0 = 0 + (1 kg)(v_{Bx})_f \Rightarrow (v_{Bx})_f = 2 m/s$ 

A 1-kg mass sliding to the right with speed 2 m/s on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed 2 m/s on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



(a)  $0 \, m/s$ 

A 1-kg mass sliding to the right with speed 2 m/s on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed 2 m/s on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



Momentum

A 1-kg mass sliding to the right with speed 2 m/s on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $2\,m/s$  on a frictionless floor collides with a 2-kg mass at rest. If the first mass stops after the collision, how fast must the second mass be going?



Conservation:  $(1 kg)(2 m/s) + 0 = 0 + (2 kg)(v_{Bx})_f \Rightarrow (v_{Bx})_f = 1 m/s$ 

Momentum

A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



(a)  $0 \, m/s$ 

A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



(a)  $0 \, m/s$ 

(b)  $0.5 \, m/s$ 

A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



A 1-kg mass sliding to the right with speed  $3\,m/s$  on a frictionless floor collides with a 4-kg mass at rest. If the first mass bounces back with a speed of  $1\,m/s$ , how fast must the second mass be going?



Momentum