June 30, Week 5

Today: Chapter 6, Circular Motion

Homework Assignment \#5 - Due Monday, July 7 at 5:00PM.

No office hours on Friday.

Tomorrow, we will start chapter 9.

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: $\mathrm{rad} / \mathrm{s}$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: rad/s
Other Popular Unit: RPM

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}$
Unit: $\mathrm{rad} / \mathrm{s}$
Other Popular Unit: $R P M=\mathrm{rev} / \mathrm{min}$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: rad/s
Other Popular Unit: $R P M=r e v / m i n$
For uniform circular motion: $\omega=\omega_{a v}$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: rad/s
Other Popular Unit: $R P M=r e v / m i n$
For uniform circular motion: $\omega=\omega_{a v}$
By convention, ω is positive for counter-clockwise motion

Related Quantities

Related to angular velocity are period and frequency.

Related Quantities

Related to angular velocity are period and frequency.

Period, T - time for one revolution
Unit $=$ second $(s$.

Related Quantities

Related to angular velocity are period and frequency.

Period, T - time for one revolution
Unit $=$ second $(s$.

Frequency, f - how many revolutions per unit of time
Unit $=$ Hertz $(H z)$.

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Δs is the linear distance traveled
$v=\frac{\Delta s}{\Delta t} \quad \omega=\frac{\Delta \theta}{\Delta t}$
When using radians, $\Delta s=r \Delta \theta$

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

$$
v=\frac{r \Delta \theta}{\Delta t}
$$

Δs is the linear distance traveled
$v=\frac{\Delta s}{\Delta t} \quad \omega=\frac{\Delta \theta}{\Delta t}$
When using radians, $\Delta s=r \Delta \theta$

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

$$
v=\frac{r \Delta \theta}{\Delta t}=r\left(\frac{\Delta \theta}{\Delta t}\right)
$$

Δs is the linear distance traveled
$v=\frac{\Delta s}{\Delta t} \quad \omega=\frac{\Delta \theta}{\Delta t}$
When using radians, $\Delta s=r \Delta \theta$

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Circular Dynamics

Objects in circular motion must have an inwards acceleration in order to change direction.

Circular Dynamics

Objects in circular motion must have an inwards acceleration in order to change direction.

Circular Dynamics

Objects in circular motion must have an inwards acceleration in order to change direction.

Circular Dynamics

Objects in circular motion must have an inwards acceleration in order to change direction.

Circular Dynamics

Objects in circular motion must have an inwards acceleration in order to change direction.

The Centripetal Acceleration The acceleration towards the center necessary for cicular motion

The centripetal acceleration like any other is NOT put on freebody diagrams. It is created by other forces like weight, tension, normal, etc.

Example

Example: An 50 kg man rides a skateboard on a flat road with a constant speed of $15 \mathrm{~m} / \mathrm{s}$, what is his apparent weight?

Example

Example: An 50 kg man rides a skateboard on a flat road with a constant speed of $15 \mathrm{~m} / \mathrm{s}$, what is his apparent weight?

- The man rides into a $100-m$ radius half-pipe. If he maintains a constant $15 \mathrm{~m} / \mathrm{s}$ speed, what is his apparent weight at the bottom of the half-pipe?

