June 26, Week 4

Today: Chapter 6, Circular Motion

Homework Assignment \#4 -Due Tomorrow.

Homework Assignment \#5 - Due Monday, July 7 at 5:00PM.

No office hours next Friday.

Objects in Contact

When objects are in contact with each other and being pushed, they must have an equal acceleration.

Objects in Contact

When objects are in contact with each other and being pushed, they must have an equal acceleration.

Objects in Contact

When objects are in contact with each other and being pushed, they must have an equal acceleration.

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

(a) $\frac{12 \mathrm{~N}}{5 \mathrm{~kg}}=2.4 \mathrm{~m} / \mathrm{s}^{2}$

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

(a) $\frac{12 \mathrm{~N}}{5 \mathrm{~kg}}=2.4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\frac{12 \mathrm{~N}}{7 \mathrm{~kg}}=1.7 \mathrm{~m} / \mathrm{s}^{2}$

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

(a) $\frac{12 \mathrm{~N}}{5 \mathrm{~kg}}=2.4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\frac{12 \mathrm{~N}}{7 \mathrm{~kg}}=1.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\frac{12 \mathrm{~N}}{12 \mathrm{~kg}}=1 \mathrm{~m} / \mathrm{s}^{2}$

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

(a) $\frac{12 \mathrm{~N}}{5 \mathrm{~kg}}=2.4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\frac{12 \mathrm{~N}}{7 \mathrm{~kg}}=1.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\frac{12 \mathrm{~N}}{12 \mathrm{~kg}}=1 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\frac{24 \mathrm{~N}}{5 \mathrm{~kg}}=4.8 \mathrm{~m} / \mathrm{s}^{2}$

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

(a) $\frac{12 \mathrm{~N}}{5 \mathrm{~kg}}=2.4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\frac{12 \mathrm{~N}}{7 \mathrm{~kg}}=1.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\frac{12 \mathrm{~N}}{12 \mathrm{~kg}}=1 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\frac{24 \mathrm{~N}}{5 \mathrm{~kg}}=4.8 \mathrm{~m} / \mathrm{s}^{2}$
(e) $\frac{24 \mathrm{~N}}{12 \mathrm{~kg}}=2 \mathrm{~m} / \mathrm{s}^{2}$

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

(a) $\frac{12 \mathrm{~N}}{5 \mathrm{~kg}}=2.4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\frac{12 \mathrm{~N}}{7 \mathrm{~kg}}=1.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\frac{12 \mathrm{~N}}{12 \mathrm{~kg}}=1 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\frac{24 \mathrm{~N}}{5 \mathrm{~kg}}=4.8 \mathrm{~m} / \mathrm{s}^{2}$
(e) $\frac{24 \mathrm{~N}}{12 \mathrm{~kg}}=2 \mathrm{~m} / \mathrm{s}^{2}$

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

(a) $\frac{12 \mathrm{~N}}{5 \mathrm{~kg}}=2.4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\frac{12 \mathrm{~N}}{7 \mathrm{~kg}}=1.7 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\frac{12 \mathrm{~N}}{12 \mathrm{~kg}}=1 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\frac{24 \mathrm{~N}}{5 \mathrm{~kg}}=4.8 \mathrm{~m} / \mathrm{s}^{2}$
(e) $\frac{24 \mathrm{~N}}{12 \mathrm{~kg}}=2 \mathrm{~m} / \mathrm{s}^{2}$

Contact-Exercise I

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the acceleration of the masses?

$$
\begin{array}{lll}
\text { (a) } \frac{12 \mathrm{~N}}{5 \mathrm{~kg}}=2.4 \mathrm{~m} / \mathrm{s}^{2} & \text { (b) } \frac{12 \mathrm{~N}}{7 \mathrm{~kg}}=1.7 \mathrm{~m} / \mathrm{s}^{2} & \text { (c) } \frac{12 \mathrm{~N}}{12 \mathrm{~kg}}=1 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { (d) } \frac{24 \mathrm{~N}}{5 \mathrm{~kg}}=4.8 \mathrm{~m} / \mathrm{s}^{2} & \text { (e) } \frac{24 \mathrm{~N}}{12 \mathrm{~kg}}=2 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

(a) 19 N

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

(a) 19 N
(b) $17 N$

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

(a) 19 N
(b) $17 N$
(c) 12 N

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

(a) 19 N
(b) $17 N$
(c) 12 N
(d) $7 N$

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

(a) 19 N
(b) $17 N$
(c) 12 N
(d) $7 N$
(e) $5 N$

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

(a) 19 N
(b) $17 N$
(c) 12 N
(d) $7 N$
(e) $5 N$

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

(a) 19 N
(b) $17 N$
(c) 12 N
(d) $7 N$
(e) $5 N$

Contact-Exercise II

A $5-\mathrm{kg}$ mass A is placed in front of a $7-\mathrm{kg}$ mass B on a frictionless table. If a $12 N$ force is applied to mass A, what is the contact force exerted by A on B ?

(d) $7 N$

$$
\sum F_{x}=m a_{x} \Rightarrow 12 N-F_{B \text { on } A}=(5 \mathrm{~kg})\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

Or $\quad F_{A \text { on } B}=(7 \mathrm{~kg})\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)$

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

$$
\overrightarrow{\mathrm{v}}=\text { velocity }
$$

As the object goes around the circle, its direction changes so it accelerates

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

$$
\overrightarrow{\mathrm{v}}=\text { velocity }
$$

As the object goes around the circle, its direction changes so it accelerates

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Uniform Circular Motion

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

r - circle's radius, unit: m

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

r - circle's radius, unit: m

Here we introduce a different "unit" to measure angle called radians or rad

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

r - circle's radius, unit: m

Here we introduce a different "unit" to measure angle called radians or rad
s - arclength, unit: m

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

r - circle's radius, unit: m

Here we introduce a different "unit" to measure angle called radians or rad
s - arclength, unit: m
When θ is in radians, $s=r \theta$

Angular Position II

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$

Angular Position II

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$
The full circle (360°) has
$s=2 \pi r \leftarrow$ circumference
$\Rightarrow 360^{\circ}=2 \pi \mathrm{rad}$

Angular Position II

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$
The full circle (360°) has
$s=2 \pi r \leftarrow$ circumference
$\Rightarrow 360^{\circ}=2 \pi \mathrm{rad}$
$180^{\circ}=\pi \mathrm{rad}$

Angular Position II

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$
The full circle (360°) has
$s=2 \pi r \leftarrow$ circumference
$\Rightarrow 360^{\circ}=2 \pi \mathrm{rad}$
$180^{\circ}=\pi \mathrm{rad}$
Example: Convert $30^{\circ}, 45^{\circ}$, and 90° to radians.
Convert 1 rad to degrees

Angular Position III

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$

Angular Position III

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$
Units:

Angular Position III

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$
Units: $\theta=\frac{s}{r}$

Angular Position III

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$
Units: $\theta=\frac{s}{r} \Rightarrow \frac{m}{m}=1 \leftarrow$ No Unit!

Angular Position III

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$
Units: $\theta=\frac{s}{r} \Rightarrow \frac{m}{m}=1 \leftarrow$ No Unit!
"rad" is a way specify an angular quantity

Angular Position III

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s=r \theta$
Units: $\theta=\frac{s}{r} \Rightarrow \frac{m}{m}=1 \leftarrow$ No Unit!
"rad" is a way specify an angular quantity

One other angle unit: the revolution(rev) - one complete round trip
1 rev $=360^{\circ}=2 \pi \mathrm{rad}$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: $\mathrm{rad} / \mathrm{s}$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: rad/s
Other Popular Unit: RPM

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}$
Unit: $\mathrm{rad} / \mathrm{s}$
Other Popular Unit: $R P M=\mathrm{rev} / \mathrm{min}$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: rad/s
Other Popular Unit: $R P M=r e v / m i n$
For uniform circular motion: $\omega=\omega_{a v}$

Angular Velocity

The rate at which a particle circles is given by its angular velocity, ω.

$$
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Unit: rad/s
Other Popular Unit: $R P M=r e v / m i n$
For uniform circular motion: $\omega=\omega_{a v}$
By convention, ω is positive for counter-clockwise motion

Related Quantities

Related to angular velocity are period and frequency.

Related Quantities

Related to angular velocity are period and frequency.

Period, T - time for one revolution
Unit $=$ second $(s$.

Related Quantities

Related to angular velocity are period and frequency.

Period, T - time for one revolution
Unit $=$ second $(s$.

Frequency, f - how many revolutions per unit of time
Unit $=$ Hertz $(H z)$.

Period and Frequency Exercise

A ball on a string takes $3 s$ to go around a circle. What is the period and frequency for this motion?

Period and Frequency Exercise

A ball on a string takes $3 s$ to go around a circle. What is the period and frequency for this motion?
(a) $T=3 s, f=3 \mathrm{~Hz}$

Period and Frequency Exercise

A ball on a string takes $3 s$ to go around a circle. What is the period and frequency for this motion?
(a) $T=3 s, f=3 \mathrm{~Hz}$
(b) $T=\frac{1}{3} s, f=3 H z$

Period and Frequency Exercise

A ball on a string takes $3 s$ to go around a circle. What is the period and frequency for this motion?
(a) $T=3 s, f=3 \mathrm{~Hz}$
(b) $T=\frac{1}{3} s, f=3 H z$
(c) $T=\frac{1}{3} s, f=\frac{1}{3} H z$

Period and Frequency Exercise

A ball on a string takes $3 s$ to go around a circle. What is the period and frequency for this motion?
(a) $T=3 s, f=3 \mathrm{~Hz}$
(b) $T=\frac{1}{3} s, f=3 H z$
(c) $T=\frac{1}{3} s, f=\frac{1}{3} H z$
(d) $T=3 s, f=\frac{1}{3} H z$

Period and Frequency Exercise

A ball on a string takes $3 s$ to go around a circle. What is the period and frequency for this motion?
(a) $T=3 s, f=3 H z$
(b) $T=\frac{1}{3} s, f=3 H z$
(c) $T=\frac{1}{3} s, f=\frac{1}{3} H z$
(d) $T=3 s, f=\frac{1}{3} H z$
(e) $T=3 s$, but f cannot be determined

Period and Frequency Exercise

A ball on a string takes $3 s$ to go around a circle. What is the period and frequency for this motion?
(a) $T=3 s, f=3 \mathrm{~Hz}$
(b) $T=\frac{1}{3} s, f=3 H z$
(c) $T=\frac{1}{3} s, f=\frac{1}{3} H z$
(d) $T=3 s, f=\frac{1}{3} H z$
(e) $T=3 s$, but f cannot be determined

Period and Frequency Exercise

A ball on a string takes $3 s$ to go around a circle. What is the period and frequency for this motion?
(a) $T=3 s, f=3 H z$
(b) $T=\frac{1}{3} s, f=3 H z$
$f=\frac{1}{T}$
(c) $T=\frac{1}{3} s, f=\frac{1}{3} H z$
$1 H z=\frac{1}{s}$
(d) $T=3 s, f=\frac{1}{3} H z$
(e) $T=3 s$, but f cannot be determined

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?
(a) $\omega=3 \mathrm{rad} / \mathrm{s}$

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?
(a) $\omega=3 \mathrm{rad} / \mathrm{s}$
(b) $\omega=\frac{1}{3} \mathrm{rad} / \mathrm{s}$

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?
(a) $\omega=3 \mathrm{rad} / \mathrm{s}$
(b) $\omega=\frac{1}{3} \mathrm{rad} / \mathrm{s}$
(c) $\omega=\frac{2 \pi}{3} \mathrm{rad} / \mathrm{s}=2.1 \mathrm{rad} / \mathrm{s}$

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?
(a) $\omega=3 \mathrm{rad} / \mathrm{s}$
(b) $\omega=\frac{1}{3} \mathrm{rad} / \mathrm{s}$
(c) $\omega=\frac{2 \pi}{3} \mathrm{rad} / \mathrm{s}=2.1 \mathrm{rad} / \mathrm{s}$
(d) $\omega=(2 \pi) \times 3 \mathrm{rad} / \mathrm{s}=18.8 \mathrm{rad} / \mathrm{s}$

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?
(a) $\omega=3 \mathrm{rad} / \mathrm{s}$
(b) $\omega=\frac{1}{3} \mathrm{rad} / \mathrm{s}$
(c) $\omega=\frac{2 \pi}{3} \mathrm{rad} / \mathrm{s}=2.1 \mathrm{rad} / \mathrm{s}$
(d) $\omega=(2 \pi) \times 3 \mathrm{rad} / \mathrm{s}=18.8 \mathrm{rad} / \mathrm{s}$
(e) Intentionally left blank

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?
(a) $\omega=3 \mathrm{rad} / \mathrm{s}$
(b) $\omega=\frac{1}{3} \mathrm{rad} / \mathrm{s}$
(c) $\omega=\frac{2 \pi}{3} \mathrm{rad} / \mathrm{s}=2.1 \mathrm{rad} / \mathrm{s}$
(d) $\omega=(2 \pi) \times 3 \mathrm{rad} / \mathrm{s}=18.8 \mathrm{rad} / \mathrm{s}$
(e) Intentionally left blank

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?
(a) $\omega=3 \mathrm{rad} / \mathrm{s}$
(b) $\omega=\frac{1}{3} \mathrm{rad} / \mathrm{s}$
$\omega=\frac{1 r e v}{T}$
(c) $\omega=\frac{2 \pi}{3} \mathrm{rad} / \mathrm{s}=2.1 \mathrm{rad} / \mathrm{s}$
(d) $\omega=(2 \pi) \times 3 \mathrm{rad} / \mathrm{s}=18.8 \mathrm{rad} / \mathrm{s}$
(e) Intentionally left blank

Period and Angular Velocity Exercise

A ball on a string takes $3 s$ to go around a circle. What is the ball's angular velocity?
(a) $\omega=3 \mathrm{rad} / \mathrm{s}$
(b) $\omega=\frac{1}{3} \mathrm{rad} / \mathrm{s}$

$$
\omega=\frac{1 r e v}{T}
$$

(c) $\omega=\frac{2 \pi}{3} \mathrm{rad} / \mathrm{s}=2.1 \mathrm{rad} / \mathrm{s}$

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

(d) $\omega=(2 \pi) \times 3 \mathrm{rad} / \mathrm{s}=18.8 \mathrm{rad} / \mathrm{s}$
(e) Intentionally left blank

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Δs is the linear distance traveled
$v=\frac{\Delta s}{\Delta t} \quad \omega=\frac{\Delta \theta}{\Delta t}$
When using radians, $\Delta s=r \Delta \theta$

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

$$
v=\frac{r \Delta \theta}{\Delta t}
$$

Δs is the linear distance traveled
$v=\frac{\Delta s}{\Delta t} \quad \omega=\frac{\Delta \theta}{\Delta t}$
When using radians, $\Delta s=r \Delta \theta$

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

$$
v=\frac{r \Delta \theta}{\Delta t}=r\left(\frac{\Delta \theta}{\Delta t}\right)
$$

Δs is the linear distance traveled
$v=\frac{\Delta s}{\Delta t} \quad \omega=\frac{\Delta \theta}{\Delta t}$
When using radians, $\Delta s=r \Delta \theta$

Relating Linear and Angular Velocity

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

Example

$$
v=r \omega
$$

Example: A ball on a string takes $3 s$ to go around a circle. If the ball is 0.5 m from the center, what is its linear velocity?

