June 26, Week 4

Today: Chapter 6, Circular Motion

Homework Assignment #4 - Due Tomorrow.

Homework Assignment #5 - Due Monday, July 7 at 5:00PM.

No office hours next Friday.

Objects in Contact

When objects are in contact with each other and being pushed, they must have an equal acceleration.

Objects in Contact

When objects are in contact with each other and being pushed, they must have an equal acceleration.

Objects in Contact

When objects are in contact with each other and being pushed, they must have an equal acceleration.

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

(a)
$$\frac{12 N}{5 kg} = 2.4 m/s^2$$

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

(a)
$$\frac{12 N}{5 kg} = 2.4 m/s^2$$
 (b) $\frac{12 N}{7 kg} = 1.7 m/s^2$

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

(a)
$$\frac{12 N}{5 kg} = 2.4 m/s^2$$
 (b) $\frac{12 N}{7 kg} = 1.7 m/s^2$ (c) $\frac{12 N}{12 kg} = 1 m/s^2$

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

(a)
$$\frac{12\,N}{5\,kg}=2.4\,m/s^2$$
 (b) $\frac{12\,N}{7\,kg}=1.7\,m/s^2$ (c) $\frac{12\,N}{12\,kg}=1\,m/s^2$ (d) $\frac{24\,N}{5\,kg}=4.8\,m/s^2$

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

(a)
$$\frac{12\,N}{5\,kg} = 2.4\,m/s^2$$
 (b) $\frac{12\,N}{7\,kg} = 1.7\,m/s^2$ (c) $\frac{12\,N}{12\,kg} = 1\,m/s^2$ (d) $\frac{24\,N}{5\,kg} = 4.8\,m/s^2$ (e) $\frac{24\,N}{12\,kg} = 2\,m/s^2$

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

(a)
$$\frac{12\,N}{5\,kg} = 2.4\,m/s^2$$
 (b) $\frac{12\,N}{7\,kg} = 1.7\,m/s^2$ (c) $\frac{12\,N}{12\,kg} = 1\,m/s^2$ (d) $\frac{24\,N}{5\,kg} = 4.8\,m/s^2$ (e) $\frac{24\,N}{12\,kg} = 2\,m/s^2$

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

(a)
$$\frac{12\,N}{5\,kg} = 2.4\,m/s^2$$
 (b) $\frac{12\,N}{7\,kg} = 1.7\,m/s^2$ (c) $\frac{12\,N}{12\,kg} = 1\,m/s^2$ (d) $\frac{24\,N}{5\,kg} = 4.8\,m/s^2$ (e) $\frac{24\,N}{12\,kg} = 2\,m/s^2$

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the acceleration of the masses?

(a)
$$\frac{12 N}{5 kg} = 2.4 m/s^2$$
 (b) $\frac{12 N}{7 kg} = 1.7 m/s^2$ (c) $\frac{12 N}{12 kg} = 1 m/s^2$

(d)
$$\frac{24 \, N}{5 \, kg} = 4.8 \, m/s^2$$
 (e) $\frac{24 \, N}{12 \, kg} = 2 \, m/s^2$

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the contact force exerted by A on B?

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the contact force exerted by A on B?

(a) 19 *N*

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the contact force exerted by A on B?

(a) 19 N (b) 17 N

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a 12 N force is applied to mass A, what is the contact force exerted by A on B?

(a) 19 N (b) 17 N (c) 12 N

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the contact force exerted by A on B?

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the contact force exerted by A on B?

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the contact force exerted by A on B?

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the contact force exerted by A on B?

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless table. If a $12\,N$ force is applied to mass A, what is the contact force exerted by A on B?

$$\sum F_x = ma_x \Rightarrow 12\,N - F_{B\,\text{on}\,A} = (5\,kg)\,(1\,m/s^2)$$
 Or
$$F_{A\,\text{on}\,B} = (7\,kg)\,(1\,m/s^2)$$

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

NOTE: Chapter 6 is only for the circular motion of a particle going around a circle. We'll do the more realistic problem of a "large" rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle $\Rightarrow 90^{\circ}$ to the circle's radius.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

Angular Position

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

r - circle's radius, unit: m

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

r - circle's radius, unit: m

Here we introduce a different "unit" to measure angle called radians or rad

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

r - circle's radius, unit: m

Here we introduce a different "unit" to measure angle called radians or rad

s - arclength, unit: m

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

r - circle's radius, unit: m

Here we introduce a different "unit" to measure angle called radians or rad

s - arclength, unit: m

When θ is in radians, $s = r\theta$

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

The full circle (360°) has
$$s = 2\pi r \leftarrow$$
 circumference $\Rightarrow 360^{\circ} = 2\pi rad$

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

$$s = r\theta$$

The full circle (360°) has $s = 2\pi r \leftarrow \text{circumference}$ $\Rightarrow 360^{\circ} = 2\pi \, rad$

$$180^{\circ} = \pi \, rad$$

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

The full circle (360°) has $s = 2\pi r \leftarrow$ circumference $\Rightarrow 360^{\circ} = 2\pi rad$

$$180^{\circ} = \pi \, rad$$

Example: Convert 30°, 45°, and 90° to radians.

Convert $1 \, rad$ to degrees

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

Units:

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

Units: $\theta = \frac{s}{r}$

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

Units: $\theta = \frac{s}{r} \Rightarrow \frac{m}{m} = 1 \leftarrow \text{No Unit!}$

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

Units: $\theta = \frac{s}{r} \Rightarrow \frac{m}{m} = 1 \leftarrow \text{No Unit!}$

"rad" is a way specify an angular quantity

It is easier to discuss a particle's motion in terms of its angular position.

Angular Position, θ - angle from the positive x-axis to a particle's position.

When θ is in radians, $s = r\theta$

Units: $\theta = \frac{s}{r} \Rightarrow \frac{m}{m} = 1 \leftarrow \text{No Unit!}$

"rad" is a way specify an angular quantity

One other angle unit: the revolution (rev) - one complete round trip

$$1 rev = 360^{\circ} = 2\pi \, rad$$

The rate at which a particle circles is given by its angular velocity, ω .

The rate at which a particle circles is given by its angular velocity, ω .

The rate at which a particle circles is given by its angular velocity, ω .

The rate at which a particle circles is given by its angular velocity, ω .

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

The rate at which a particle circles is given by its angular velocity, ω .

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Unit: rad/s

The rate at which a particle circles is given by its angular velocity, ω .

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Unit: rad/s

Other Popular Unit: RPM

The rate at which a particle circles is given by its angular velocity, ω .

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Unit: rad/s

Other Popular Unit: RPM = rev/min

The rate at which a particle circles is given by its angular velocity, ω .

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Unit: rad/s

Other Popular Unit: RPM = rev/min

For uniform circular motion: $\omega = \omega_{av}$

Circular Motion

The rate at which a particle circles is given by its angular velocity, ω .

$$\omega_{av} = \frac{\theta_f - \theta_i}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Unit: rad/s

Other Popular Unit: RPM = rev/min

For uniform circular motion: $\omega = \omega_{av}$

By convention, ω is positive for counter-clockwise motion

Related Quantities

Related to angular velocity are period and frequency.

Related Quantities

Related to angular velocity are period and frequency.

Period, T - time for one revolution

Unit = second (s.)

Related Quantities

Related to angular velocity are period and frequency.

Period, T - time for one revolution

Unit = second (s.)

Frequency, f - how many revolutions per unit of time Unit = Hertz (Hz).

A ball on a string takes 3s to go around a circle. What is the period and frequency for this motion?

A ball on a string takes 3s to go around a circle. What is the period and frequency for this motion?

(a)
$$T = 3 s$$
, $f = 3 Hz$

A ball on a string takes 3s to go around a circle. What is the period and frequency for this motion?

(a)
$$T = 3 s$$
, $f = 3 Hz$

(b)
$$T = \frac{1}{3}s$$
, $f = 3Hz$

A ball on a string takes 3s to go around a circle. What is the period and frequency for this motion?

(a)
$$T = 3 s$$
, $f = 3 Hz$

(b)
$$T = \frac{1}{3} s$$
, $f = 3 Hz$

(c)
$$T = \frac{1}{3} s$$
, $f = \frac{1}{3} Hz$

A ball on a string takes 3s to go around a circle. What is the period and frequency for this motion?

(a)
$$T = 3 s$$
, $f = 3 Hz$

(b)
$$T = \frac{1}{3}s$$
, $f = 3Hz$

(c)
$$T = \frac{1}{3} s$$
, $f = \frac{1}{3} Hz$

(d)
$$T = 3 s$$
, $f = \frac{1}{3} Hz$

A ball on a string takes 3s to go around a circle. What is the period and frequency for this motion?

(a)
$$T = 3 s$$
, $f = 3 Hz$

(b)
$$T = \frac{1}{3} s$$
, $f = 3 Hz$

(c)
$$T = \frac{1}{3} s$$
, $f = \frac{1}{3} Hz$

(d)
$$T = 3 s$$
, $f = \frac{1}{3} Hz$

(e) T = 3 s, but f cannot be determined

A ball on a string takes 3s to go around a circle. What is the period and frequency for this motion?

(a)
$$T = 3 s$$
, $f = 3 Hz$

(b)
$$T = \frac{1}{3} s$$
, $f = 3 Hz$

(c)
$$T = \frac{1}{3} s$$
, $f = \frac{1}{3} Hz$

(d)
$$T = 3 s$$
, $f = \frac{1}{3} Hz$

(e) T = 3 s, but f cannot be determined

A ball on a string takes 3s to go around a circle. What is the period and frequency for this motion?

(a)
$$T = 3 s$$
, $f = 3 Hz$

(b)
$$T = \frac{1}{3} s$$
, $f = 3 Hz$

(c)
$$T = \frac{1}{3} s$$
, $f = \frac{1}{3} Hz$

(d)
$$T = 3 s$$
, $f = \frac{1}{3} Hz$

$$f = \frac{1}{T}$$

$$1Hz = \frac{1}{s}$$

(e) T = 3 s, but f cannot be determined

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

(a)
$$\omega = 3 \, rad/s$$

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

(a)
$$\omega = 3 \, rad/s$$

(b)
$$\omega = \frac{1}{3} rad/s$$

Circular Motion

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

(a)
$$\omega = 3 \, rad/s$$

(b)
$$\omega = \frac{1}{3} rad/s$$

(c)
$$\omega = \frac{2\pi}{3} rad/s = 2.1 rad/s$$

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

(a)
$$\omega = 3 \, rad/s$$

(b)
$$\omega = \frac{1}{3} rad/s$$

(c)
$$\omega = \frac{2\pi}{3} rad/s = 2.1 rad/s$$

(d)
$$\omega = (2\pi) \times 3 \, rad/s = 18.8 \, rad/s$$

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

(a)
$$\omega = 3 \, rad/s$$

(b)
$$\omega = \frac{1}{3} rad/s$$

(c)
$$\omega = \frac{2\pi}{3} rad/s = 2.1 rad/s$$

(d)
$$\omega = (2\pi) \times 3 \, rad/s = 18.8 \, rad/s$$

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

(a)
$$\omega = 3 \, rad/s$$

(b)
$$\omega = \frac{1}{3} rad/s$$

(c)
$$\omega = \frac{2\pi}{3} \, rad/s = 2.1 \, rad/s$$

(d)
$$\omega = (2\pi) \times 3 \, rad/s = 18.8 \, rad/s$$

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

(a)
$$\omega = 3 \, rad/s$$

(b)
$$\omega = \frac{1}{3} rad/s$$

(c)
$$\omega = \frac{2\pi}{3} rad/s = 2.1 rad/s$$

$$\omega = \frac{1 \, rev}{T}$$

(d)
$$\omega = (2\pi) \times 3 \, rad/s = 18.8 \, rad/s$$

A ball on a string takes 3s to go around a circle. What is the ball's angular velocity?

(a)
$$\omega = 3 \, rad/s$$

(b)
$$\omega = \frac{1}{3} rad/s$$

(c)
$$\omega = \frac{2\pi}{3} \, rad/s = 2.1 \, rad/s$$

(d)
$$\omega = (2\pi) \times 3 \, rad/s = 18.8 \, rad/s$$

$$\omega = \frac{1 \, rev}{T}$$

$$\omega = \frac{2\pi}{T} = 2\pi f$$

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

 $\Delta s = \text{arclength}$

 Δs is the linear distance traveled

$$v = \frac{\Delta s}{\Delta t}$$

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

$$\Delta s = \text{arclength}$$

 Δs is the linear distance traveled

$$v = \frac{\Delta s}{\Delta t} \qquad \omega = \frac{\Delta \theta}{\Delta t}$$

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

 $\Delta s = \text{arclength}$

 Δs is the linear distance traveled

$$v = \frac{\Delta s}{\Delta t} \qquad \omega = \frac{\Delta \theta}{\Delta t}$$

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

$$\Delta s = \text{arclength}$$

 Δs is the linear distance traveled

$$v = \frac{\Delta s}{\Delta t} \qquad \omega = \frac{\Delta \theta}{\Delta t}$$

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

$$v = \frac{r\Delta\theta}{\Delta t} = r\left(\frac{\Delta\theta}{\Delta t}\right)$$

 $\Delta s = \text{arclength}$

 Δs is the linear distance traveled

$$v = \frac{\Delta s}{\Delta t} \qquad \omega = \frac{\Delta \theta}{\Delta t}$$

It now becomes important to distinguish angular velocity (ω) from linear velocity (v).

$$\Delta s = \text{arclength}$$

 Δs is the linear distance traveled

$$v = \frac{\Delta s}{\Delta t} \qquad \omega = \frac{\Delta \theta}{\Delta t}$$

$$v = \frac{r\Delta\theta}{\Delta t} = r\left(\frac{\Delta\theta}{\Delta t}\right) \Rightarrow v = r\omega \longleftarrow \omega \text{ must be in } rad/s$$

Example

 $v = r\omega$

Example: A ball on a string takes 3s to go around a circle. If the ball is 0.5m from the center, what is its linear velocity?