
June 26, Week 4

Circular Motion 26th June 2014

Today: Chapter 6, Circular Motion

Homework Assignment #4 -Due Tomorrow.

Homework Assignment #5 - Due Monday, July 7 at 5:00PM.

No office hours next Friday.
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aA = aB
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the acceleration
of the masses?

A
B12N
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the acceleration
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the contact force
exerted by A on B?

A
B12N
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the contact force
exerted by A on B?

A
B12N

(a) 19N
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the contact force
exerted by A on B?

A
B12N

(a) 19N (b) 17N



Contact-Exercise II

Circular Motion 26th June 2014

A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the contact force
exerted by A on B?
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the contact force
exerted by A on B?

A
B12N

(a) 19N (b) 17N (c) 12N (d) 7N (e) 5N
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the contact force
exerted by A on B?

A
B12N

−→

FB on A

−→

FA on B

(a) 19N (b) 17N (c) 12N (d) 7N (e) 5N
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the contact force
exerted by A on B?

A
B12N

−→

FB on A

−→

FA on B

(a) 19N (b) 17N (c) 12N (d) 7N (e) 5N
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A 5-kg mass A is placed in front of a 7-kg mass B on a frictionless
table. If a 12N force is applied to mass A, what is the contact force
exerted by A on B?

A
B12N

−→

FB on A

−→

FA on B

(d) 7N

∑

Fx = max ⇒ 12N − FB on A = (5 kg) (1m/s2)

Or FA on B = (7 kg) (1m/s2)
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rotating object in the next chapter.

For circular motion, the velocity is tangent to the circle⇒ 90◦ to the
circle’s radius.
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

b

r

θ

r - circle’s radius, unit: m

Here we introduce a different “unit” to
measure angle called radians or rad

s

s - arclength, unit: m
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

b

r

θ

r - circle’s radius, unit: m

Here we introduce a different “unit” to
measure angle called radians or rad

s

s - arclength, unit: m

When θ is in radians, s = rθ
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

b

r

θ

s

When θ is in radians, s = rθ
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

b

r

θ

s

When θ is in radians, s = rθ

The full circle (360◦) has
s = 2πr ← circumference
⇒ 360◦ = 2π rad
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

b

r

θ

s

When θ is in radians, s = rθ

The full circle (360◦) has
s = 2πr ← circumference
⇒ 360◦ = 2π rad

180◦ = π rad
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

b

r

θ

s

When θ is in radians, s = rθ

The full circle (360◦) has
s = 2πr ← circumference
⇒ 360◦ = 2π rad

180◦ = π rad

Example: Convert 30◦, 45◦, and 90◦ to
radians.
Convert 1 rad to degrees
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

r

θ

s

When θ is in radians, s = rθ



Angular Position III

Circular Motion 26th June 2014

It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

r

θ

s

When θ is in radians, s = rθ

Units:
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

r

θ

s

When θ is in radians, s = rθ

Units: θ = s
r
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

r

θ

s

When θ is in radians, s = rθ

Units: θ = s
r
⇒

m
m

= 1← No Unit!
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

r

θ

s

When θ is in radians, s = rθ

Units: θ = s
r
⇒

m
m

= 1← No Unit!

“rad” is a way specify an angular
quantity
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It is easier to discuss a particle’s motion in terms of its angular
position.

Angular Position, θ - angle from the positive x-axis to a particle’s
position.

r

θ

s

When θ is in radians, s = rθ

Units: θ = s
r
⇒

m
m

= 1← No Unit!

“rad” is a way specify an angular
quantity

One other angle unit: the
revolution(rev) - one complete
round trip
1 rev = 360◦ = 2π rad
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θf − θi
t2 − t1

=
∆θ
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Unit: rad/s



Angular Velocity

Circular Motion 26th June 2014
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=
∆θ
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Unit: rad/s

Other Popular Unit: RPM
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The rate at which a particle circles is given by its angular velocity, ω.

θi

θf ωav =
θf − θi
t2 − t1

=
∆θ
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Unit: rad/s

Other Popular Unit: RPM = rev/min

For uniform circular motion: ω = ωav
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The rate at which a particle circles is given by its angular velocity, ω.

θi

θf ωav =
θf − θi
t2 − t1

=
∆θ

∆t

Unit: rad/s

Other Popular Unit: RPM = rev/min

For uniform circular motion: ω = ωav

By convention, ω is positive for counter-clockwise motion
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Related to angular velocity are period and frequency.

Period, T - time for one revolution

Unit = second (s.)

Frequency, f - how many revolutions per unit of time

Unit = Hertz (Hz).
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A ball on a string takes 3 s to go around a circle. What is the period
and frequency for this motion?

(a) T = 3 s, f = 3Hz

(b) T =
1

3
s, f = 3Hz

(c) T =
1

3
s, f =

1

3
Hz

(d) T = 3 s, f =
1

3
Hz

(e) T = 3 s, but f cannot be determined

f =
1

T

1Hz =
1

s
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A ball on a string takes 3 s to go around a circle. What is the ball’s
angular velocity?

(a) ω = 3 rad/s

(b) ω =
1

3
rad/s

(c) ω =
2π

3
rad/s = 2.1 rad/s
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A ball on a string takes 3 s to go around a circle. What is the ball’s
angular velocity?

(a) ω = 3 rad/s
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1
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A ball on a string takes 3 s to go around a circle. What is the ball’s
angular velocity?

(a) ω = 3 rad/s

(b) ω =
1

3
rad/s

(c) ω =
2π

3
rad/s = 2.1 rad/s

(d) ω = (2π)× 3 rad/s = 18.8 rad/s

(e) Intentionally left blank

ω =
1 rev

T
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A ball on a string takes 3 s to go around a circle. What is the ball’s
angular velocity?

(a) ω = 3 rad/s

(b) ω =
1

3
rad/s

(c) ω =
2π

3
rad/s = 2.1 rad/s

(d) ω = (2π)× 3 rad/s = 18.8 rad/s

(e) Intentionally left blank

ω =
1 rev

T

ω =
2π

T
= 2πf
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It now becomes important to distinguish angular velocity (ω) from
linear velocity (v).

r
∆θ

∆s = arclength

∆s is the linear distance traveled

v =
∆s

∆t
ω =

∆θ

∆t

When using radians, ∆s = r∆θ

v =
r∆θ

∆t
= r

(

∆θ
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⇒ v = rω ←−ω must be in rad/s
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v = rω

Example: A ball on a string takes 3 s to go around a circle. If the ball
is 0.5m from the center, what is its linear velocity?
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