June 19, Week 3

Today: Chapter 4, Newton's Third Law

Homework \#3 is due tomorrow.

Problem \#1 had a typo in it. Both ships have velocities that are in miles per hour.

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
m a
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
m a \Rightarrow k g \cdot m / s^{2}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
m a \Rightarrow k g \cdot m / s^{2}
$$

$$
\Sigma F
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
\begin{aligned}
& m a \Rightarrow k g \cdot m / s^{2} \\
& \Sigma F \Rightarrow N
\end{aligned}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
\begin{aligned}
& m a \Rightarrow k g \cdot m / s^{2} \\
& \Sigma F \Rightarrow N \\
& N=k g \cdot m / s^{2}
\end{aligned}
$$

Second Law Examples

Example: A $6860-N$ car is in free-fall, what it its mass?

Second Law Examples

Example: A $6860-N$ car is in free-fall, what it its mass?

Example: A $6860-N$ car is sitting stationary on the ground, what is its mass?

Second Law Examples

Example: A $6860-N$ car is in free-fall, what it its mass?

Example: A $6860-N$ car is sitting stationary on the ground, what is its mass?

$$
w=m g
$$

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?
(a) \sqrt{A}

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?
${ }^{\text {(a) }} \stackrel{\Gamma}{A} \longrightarrow \sqrt{B}$

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?
(a) $\stackrel{\square}{A} \xrightarrow[B]{B}$

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

${ }^{\text {(b) }} \vec{A} \xrightarrow[B]{ }$

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

${ }^{\text {(b) }} \stackrel{\square}{A} \longrightarrow \stackrel{\square}{B}$

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

(c) $\vec{A} \longrightarrow \sqrt{B}$

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

$\stackrel{\text { (b) }}{\stackrel{\rightharpoonup}{A}} \stackrel{\rightharpoonup}{\square} \xrightarrow[C]{\square}$

${ }^{\text {(d) }} \vec{A} \longrightarrow \vec{B}$

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

${ }^{\text {(b) }} \stackrel{\rightharpoonup}{A} \xrightarrow[C]{\square} D$

${ }^{\text {(d) }} \stackrel{\rightharpoonup}{A} \longrightarrow \stackrel{\text { 步 }}{B}$

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Second Law Exercise

A spaceship is floating sideways from point A to B in the middle of outer space. At B the spaceship turns on its engines and moves to point C. At C the engines are again turned off and the spaceship floats to point D. Which of the following picture correctly shows the spaceship's trajectory from A to D ?

Exercise Followup

Exercise Followup

Exercise Followup

From A to B rocket goes on straight line since no force \Rightarrow uniform motion

Exercise Followup

From A to B rocket goes on straight line since no force \Rightarrow uniform motion

Exercise Followup

> From A to B rocket goes on straight line since no force \Rightarrow uniform motion When rockets turned on this causes an acceleration in y-direction but NOT x-direction \Rightarrow acceleration motion in y, uniform motion in $x \Rightarrow$ parabolic motion

Exercise Followup

From A to B rocket goes on straight line since no force \Rightarrow uniform motion When rockets turned on this causes an acceleration in y-direction but NOT x-direction \Rightarrow acceleration motion in y, uniform motion in $x \Rightarrow$ parabolic motion

Exercise Followup

From A to B rocket goes on straight line since no force \Rightarrow uniform motion

When rockets turned on this causes an acceleration in y-direction but NOT x-direction \Rightarrow acceleration motion in y, uniform motion in $x \Rightarrow$ parabolic motion

When rockets turned off again we go back to uniform motion \Rightarrow straight line. But now we have velocity in both x - and y-directions \Rightarrow straight line at an angle

Exercise Followup

From A to B rocket goes on straight line since no force \Rightarrow uniform motion

When rockets turned on this causes an acceleration in y-direction but NOT x-direction \Rightarrow acceleration motion in y, uniform motion in $x \Rightarrow$ parabolic motion

When rockets turned off again we go back to uniform motion \Rightarrow straight line. But now we have velocity in both x - and y-directions \Rightarrow straight line at an angle

Newton's Third Law

For every action, there is an equal but opposite reaction.

Newton's Third Law

For every action, there is an equal but opposite reaction.

Newton's Third Law

For every action, there is an equal but opposite reaction.

$$
\overrightarrow{\mathbf{F}}_{A \text { on } B}=\text { Force that } A \text { exerts on } B
$$

Newton's Third Law

For every action, there is an equal but opposite reaction.

$$
\overrightarrow{\mathbf{F}}_{A \text { on } B}=\text { Force that } A \text { exerts on } B
$$

$\overrightarrow{\mathbf{F}}_{B \text { on } A}=$ Force that B exerts on A

Newton's Third Law

For every action, there is an equal but opposite reaction.

$$
\overrightarrow{\mathbf{F}}_{A \text { on } B}=\text { Force that } A \text { exerts on } B
$$

$\overrightarrow{\mathbf{F}}_{B \text { on } A}=$ Force that B exerts on A

Third Law: $\overrightarrow{\mathbf{F}}_{B \text { on } A}=-\overrightarrow{\mathbf{F}}_{A \text { on } B}$

Newton's Third Law

For every action, there is an equal but opposite reaction.

$\overrightarrow{\mathbf{F}}_{A \text { on } B}=$ Force that A exerts on B
$\overrightarrow{\mathbf{F}}_{B \text { on } A}=$ Force that B exerts on A

$$
\text { Third Law: } \overrightarrow{\mathbf{F}}_{B \text { on } A}=-\overrightarrow{\mathbf{F}}_{A \text { on } B}
$$

Always remember:

Action and Reaction are applied to different objects!

Third Law Exercise

Whenever Lionel Messi kicks a soccer ball, which of the following is a true statement?

Third Law Exercise

Whenever Lionel Messi kicks a soccer ball, which of the following is a true statement?
(a) Messi exerts a larger force on the soccer ball than it exerts on him.

Third Law Exercise

Whenever Lionel Messi kicks a soccer ball, which of the following is a true statement?
(a) Messi exerts a larger force on the soccer ball than it exerts on him.
(b) The soccer ball exerts a larger force on Messi than he exerts on it.

Third Law Exercise

Whenever Lionel Messi kicks a soccer ball, which of the following is a true statement?
(a) Messi exerts a larger force on the soccer ball than it exerts on him.
(b) The soccer ball exerts a larger force on Messi than he exerts on it.
(c) Messi exerts an equal force to the one the soccer ball exerts on him.

Third Law Exercise

Whenever Lionel Messi kicks a soccer ball, which of the following is a true statement?
(a) Messi exerts a larger force on the soccer ball than it exerts on him.
(b) The soccer ball exerts a larger force on Messi than he exerts on it.
(c) Messi exerts an equal force to the one the soccer ball exerts on him.
(d) Sometimes the force exerted by Messi is larger than what the football exerts on him. It depends on how hard he kicks it.

Third Law Exercise

Whenever Lionel Messi kicks a soccer ball, which of the following is a true statement?
(a) Messi exerts a larger force on the soccer ball than it exerts on him.
(b) The soccer ball exerts a larger force on Messi than he exerts on it.
(c) Messi exerts an equal force to the one the soccer ball exerts on him.
(d) Sometimes the force exerted by Messi is larger than what the football exerts on him. It depends on how hard he kicks it.
(e) Intentionally left blank.

Third Law Exercise

Whenever Lionel Messi kicks a soccer ball, which of the following is a true statement?
(a) Messi exerts a larger force on the soccer ball than it exerts on him.
(b) The soccer ball exerts a larger force on Messi than he exerts on it.
(c) Messi exerts an equal force to the one the soccer ball exerts on him.
(d) Sometimes the force exerted by Messi is larger than what the football exerts on him. It depends on how hard he kicks it.
(e) Intentionally left blank.

Third Law Followup

Third Law Followup

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathbf{n}}_{B}$, static friction $\overrightarrow{\mathbf{f}}_{B}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathbf{n}}_{B}$, static friction $\overrightarrow{\mathbf{f}}_{B}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathbf{n}}_{B}$, static friction $\overrightarrow{\mathrm{f}}_{B}$
Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathrm{n}}_{B}$, static friction $\overrightarrow{\mathbf{f}}_{B}$
Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathrm{n}}_{B}$, static friction $\overrightarrow{\mathbf{f}}_{B}$
Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{k}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathbf{n}}_{B}$, static friction $\overrightarrow{\mathbf{f}}_{B}$
Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Forces on Messi from Ball: Kick $\overrightarrow{\mathrm{K}}_{B}$ on M

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathbf{n}}_{B}$, static friction $\overrightarrow{\mathbf{f}}_{B}$
Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Forces on Messi from Ball: Kick $\overrightarrow{\mathrm{K}}_{B}$ on M

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathbf{n}}_{B}$, static friction $\overrightarrow{\mathbf{f}}_{B}$
Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Forces on Messi from Ball: Kick $\overrightarrow{\mathrm{K}}_{B}$ on M

Forces on Messi from ground: Normal $\overrightarrow{\mathrm{n}}_{M}$, static friction $\overrightarrow{\mathrm{f}}_{M}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathbf{n}}_{B}$, static friction $\overrightarrow{\mathbf{f}}_{B}$
Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Forces on Messi from Ball: Kick $\overrightarrow{\mathrm{K}}_{B}$ on M Forces on Messi from ground: Normal $\overrightarrow{\mathrm{n}}_{M}$, static friction $\overrightarrow{\mathbf{f}}_{M}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathrm{n}}_{B}$, static friction $\overrightarrow{\mathrm{f}}_{B}$ Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Forces on Messi from Ball: Kick $\overrightarrow{\mathrm{K}}_{B}$ on M Forces on Messi from ground: Normal $\overrightarrow{\mathrm{n}}_{M}$, static friction $\overrightarrow{\mathbf{f}}_{M}$ Long-Range Force on Messi: Weight $\overrightarrow{\mathrm{w}}_{M}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathrm{n}}_{B}$, static friction $\overrightarrow{\mathrm{f}}_{B}$ Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}}_{B}$

Forces on Messi from Ball: Kick $\overrightarrow{\mathbf{K}}_{B}$ on M Forces on Messi from ground: Normal $\overrightarrow{\mathrm{n}}_{M}$, static friction $\overrightarrow{\mathbf{f}}_{M}$ Long-Range Force on Messi: Weight $\overrightarrow{\mathrm{w}}_{M}$

Third Law Followup

Forces on Ball from Messi: Kick $\overrightarrow{\mathbf{K}}_{M \text { on } B}$ Forces on Ball from ground:
Normal $\overrightarrow{\mathbf{n}}_{B}$, static friction $\overrightarrow{\mathrm{f}}_{B}$ Long-Range Force on Ball: Weight $\overrightarrow{\mathrm{w}_{B}}$

Forces on Messi from Ball: Kick $\overrightarrow{\mathrm{K}}_{B}$ on M Forces on Messi from ground: Normal $\overrightarrow{\mathbf{n}}_{M}$, static friction $\overrightarrow{\mathbf{f}}_{M}$ Long-Range Force on Messi: Weight $\overrightarrow{\mathrm{w}}_{M}$

K_{M} on B is equal to K_{B} on M, but since there is more friction on Messi, the ball moves, Messi does not.

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The $200 N$ upwards normal force on the crate

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The $200 N$ upwards normal force on the crate
(b) The $200 N$ downwards force on the crate

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The $200 N$ upwards normal force on the crate
(b) The 200 N downwards force on the crate
(c) The 200 N downwards force on the earth

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The $200 N$ downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The $200 N$ upwards force on the earth

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The $200 N$ upwards normal force on the crate
(b) The $200 N$ downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The 200 N upwards force on the earth
(e) Intentionally left blank

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The $200 N$ upwards normal force on the crate
(b) The $200 N$ downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The $200 N$ upwards force on the earth
(e) Intentionally left blank

$$
\begin{aligned}
& \text { Weight }=\overrightarrow{\mathrm{w}}=\overrightarrow{\mathbf{F}}_{E \text { on } B} \text { is } \\
& \text { the downwards force that earth } \\
& \text { exerts on box }
\end{aligned}
$$

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The $200 N$ downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The 200 N upwards force on the earth
(e) Intentionally left blank

Weight $=\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{F}}_{E \text { on } B}$ is the downwards force that earth exerts on box

Third Law Exercise

A $200-N$ crate is placed on a horizontal surface. The reaction to the force of gravity on the crate is:
(a) The 200 N upwards normal force on the crate
(b) The $200 N$ downwards force on the crate
(c) The 200 N downwards force on the earth
(d) The 200 N upwards force on the earth
(e) Intentionally left blank

Weight $=\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{F}}_{E \text { on } B}$ is the downwards force that earth exerts on box
Reaction $=\overrightarrow{\mathbf{F}}_{B \text { on } E}$ upwards force that box exerts on earth

Applying Newton's Laws

There are two main tasks for which we will apply Newton's Laws

Applying Newton's Laws

There are two main tasks for which we will apply Newton's Laws

- To find the magnitude and sometimes direction of unknown forces

Applying Newton's Laws

There are two main tasks for which we will apply Newton's Laws

- To find the magnitude and sometimes direction of unknown forces
- To find the acceleration of masses

Applying Newton's Laws

There are two main tasks for which we will apply Newton's Laws

- To find the magnitude and sometimes direction of unknown forces
- To find the acceleration of masses

It is imperative that we always identify and use the forces acting ON objects (and not the forces exerted by objects).

Applying Newton's Laws

There are two main tasks for which we will apply Newton's Laws

- To find the magnitude and sometimes direction of unknown forces
- To find the acceleration of masses

It is imperative that we always identify and use the forces acting ON objects (and not the forces exerted by objects).
$\overrightarrow{\mathrm{a}}=0$ are called equilibrium or statics problems

Applying Newton's Laws

There are two main tasks for which we will apply Newton's Laws

- To find the magnitude and sometimes direction of unknown forces
- To find the acceleration of masses

It is imperative that we always identify and use the forces acting ON objects (and not the forces exerted by objects).
$\overrightarrow{\mathrm{a}}=0$ are called equilibrium or statics problems
$\overrightarrow{\mathrm{a}} \neq 0$ are called dynamic or kinetics problems

Steps

Steps for applying Newton's Laws in problems:

Steps

Steps for applying Newton's Laws in problems:
(1) Draw a picture

Steps

Steps for applying Newton's Laws in problems:
(1) Draw a picture
(2) For any object with mass, identify the forces acting on that object

Steps

Steps for applying Newton's Laws in problems:
(1) Draw a picture
(2) For any object with mass, identify the forces acting on that object
(3) For each object with mass, draw a free body diagram.

Steps

Steps for applying Newton's Laws in problems:
(1) Draw a picture
(2) For any object with mass, identify the forces acting on that object
(3) For each object with mass, draw a free body diagram.
(4) Find the net force components from vector addition and apply the component form of Newton's Second Law:

$$
\sum F_{x}=m a_{x}
$$

$$
\sum F_{y}=m a_{y}
$$

Steps

Steps for applying Newton's Laws in problems:
(1) Draw a picture
(2) For any object with mass, identify the forces acting on that object
(3) For each object with mass, draw a free body diagram.
(4) Find the net force components from vector addition and apply the component form of Newton's Second Law:

$$
\sum F_{x}=m a_{x}
$$

$$
\sum F_{y}=m a_{y}
$$

(5) Solve for unknowns

