June 18, Week 3

Today: Chapter 4, Newton's First and Second Law

Homework \#3 is now available.
Problem \#1 had a typo in it. Both ships have velocities that are in miles per hour.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

$$
\begin{aligned}
& \text { Superposition - The net } \\
& \text { result of two or more } \\
& \text { forces is given by the } \\
& \text { vector sum. } \\
& \Sigma \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3} \ldots
\end{aligned}
$$

Superposition

Usually there is more than one force acting on an object.

> Superposition - The net result of two or more forces is given by the vector sum.
> $\Sigma \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3} \ldots$

Superposition

Usually there is more than one force acting on an object.

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathrm{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathrm{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathrm{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathrm{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathrm{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathbf{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathbf{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathbf{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathbf{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathbf{F}}$ acting on the box?

Superposition Exercise

A box is subjected to the four forces shown. Which of the following correctly shows the net force $\sum \overrightarrow{\mathbf{F}}$ acting on the box?

Weight

Forces you will be expected to Identify:

Weight

Forces you will be expected to Identify:
Weight, $\overrightarrow{\mathrm{w}}$ - Downward force exerted by gravity.

Weight

Forces you will be expected to Identify:
Weight, $\overrightarrow{\mathrm{w}}$ - Downward force exerted by gravity.

Weight

Forces you will be expected to Identify:
Weight, $\overrightarrow{\mathrm{w}}$ - Downward force exerted by gravity.

Still using the particle model, so think of a dot at the center of the object

Weight

Forces you will be expected to Identify:
Weight, $\overrightarrow{\mathrm{w}}$ - Downward force exerted by gravity.

Still using the particle model, so think of a dot at the center of the object

Weight

Forces you will be expected to Identify:
Weight, $\overrightarrow{\mathrm{w}}$ - Downward force exerted by gravity.

Still using the particle model, so think of a dot at the center of the object

Center of Gravity

When we stop using the particle model and assuming all forces applied at the center, we'll locate the weight at a point called the center of gravity

Normal Force

Forces you will be expected to Identify:

Normal Force

Forces you will be expected to Identify:
Normal Force - $\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Normal Force

Forces you will be expected to Identify:
Normal Force - $\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Normal Force

Forces you will be expected to Identify:
Normal Force - $\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Normal Force

Forces you will be expected to Identify:
Normal Force - $\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Normal Force

Forces you will be expected to Identify:
Normal Force - $\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Normal Force

Forces you will be expected to Identify:
Normal Force - $\overrightarrow{\mathrm{n}}$, the perpendicular force exerted by one solid object onto another solid object.

Whether object is being pushed or pulled we always draw the forces going away from the dot

Friction

Forces you will be expected to Identify:

Friction

Forces you will be expected to Identify:
Friction $-\vec{f}$, force which slows a moving object or prevents motion, always opposed to the motion

Friction

Forces you will be expected to Identify:
Friction $-\vec{f}$, force which slows a moving object or prevents motion, always opposed to the motion

There are two types of friction:

Friction

Forces you will be expected to Identify:
Friction $-\vec{f}$, force which slows a moving object or prevents motion, always opposed to the motion

There are two types of friction: Kinetic friction

Friction

Forces you will be expected to Identify:
Friction $-\vec{f}$, force which slows a moving object or prevents motion, always opposed to the motion

There are two types of friction: Kinetic friction and Static Friction.

Friction

Forces you will be expected to Identify:
Friction $-\overrightarrow{\mathrm{f}}$, force which slows a moving object or prevents motion, always opposed to the motion

There are two types of friction: Kinetic friction and Static Friction.

Kinetic friction acts on sliding objects. Opposed to motion \Rightarrow opposite to the velocity

Friction

Forces you will be expected to Identify:
Friction - $\overrightarrow{\mathrm{f}}$, force which slows a moving object or prevents motion, always opposed to the motion

There are two types of friction: Kinetic friction and Static Friction.

Kinetic friction acts on sliding objects. Opposed to motion \Rightarrow opposite to the velocity

Friction

Forces you will be expected to Identify:
Friction $-\vec{f}$, force which slows a moving object or prevents motion, always opposed to the motion

There are two types of friction: Kinetic friction and Static Friction.

Kinetic friction acts on sliding objects. Opposed to motion \Rightarrow opposite to the velocity

Static friction acts on stationary objects. It prevents motion when other forces are applied.

Friction

Forces you will be expected to Identify:
Friction - $\overrightarrow{\mathrm{f}}$, force which slows a moving object or prevents motion, always opposed to the motion

There are two types of friction: Kinetic friction and Static Friction.

Kinetic friction acts on sliding objects. Opposed to motion \Rightarrow opposite to the velocity

Static friction acts on stationary objects. It prevents motion when other forces are applied.

Tension

Tension - $\overrightarrow{\mathrm{T}}$, pulling force exerted by a thin rope, chain, or spring. Always in the same direction as the rope itself.

Tension

Tension - $\overrightarrow{\mathrm{T}}$, pulling force exerted by a thin rope, chain, or spring. Always in the same direction as the rope itself.

Tension

Tension - $\overrightarrow{\mathrm{T}}$, pulling force exerted by a thin rope, chain, or spring. Always in the same direction as the rope itself.

Tension

Tension $-\overrightarrow{\mathrm{T}}$, pulling force exerted by a thin rope, chain, or spring. Always in the same direction as the rope itself.

Tension

Tension $-\overrightarrow{\mathrm{T}}$, pulling force exerted by a thin rope, chain, or spring. Always in the same direction as the rope itself.

Identifying Forces

To identify the INDIVIDUAL forces are acting on an object, draw a circle around the object and remember that only things that touch the object at the boundary can exert contact forces.

Identifying Forces

To identify the INDIVIDUAL forces are acting on an object, draw a circle around the object and remember that only things that touch the object at the boundary can exert contact forces.

Identifying Forces

To identify the INDIVIDUAL forces are acting on an object, draw a circle around the object and remember that only things that touch the object at the boundary can exert contact forces.

Identifying Forces

To identify the INDIVIDUAL forces are acting on an object, draw a circle around the object and remember that only things that touch the object at the boundary can exert contact forces.

Identifying Forces

To identify the INDIVIDUAL forces are acting on an object, draw a circle around the object and remember that only things that touch the object at the boundary can exert contact forces.

Identifying Forces

To identify the INDIVIDUAL forces are acting on an object, draw a circle around the object and remember that only things that touch the object at the boundary can exert contact forces.

Finally, Identify our only long-range force: Gravity $\Rightarrow \overrightarrow{\mathrm{w}}$

Force Identification Exercise

Block B is circling around a rough table while connected to a rope that passes through a hole in the center of the table down to cylinder A. Which of the following forces do we NOT identify as acting on the block B ?

Force Identification Exercise

Block B is circling around a rough table while connected to a rope that passes through a hole in the center of the table down to cylinder A. Which of the following forces do we NOT identify as acting on the block B ?

(a) The weight of block B

Force Identification Exercise

Block B is circling around a rough table while connected to a rope that passes through a hole in the center of the table down to cylinder A. Which of the following forces do we NOT identify as acting on the block B ?

(a) The weight of block B
(b) The weight of block A

Force Identification Exercise

Block B is circling around a rough table while connected to a rope that passes through a hole in the center of the table down to cylinder A. Which of the following forces do we NOT identify as acting on the block B ?

(a) The weight of block B
(b) The weight of block A
(c) Tension

Force Identification Exercise

Block B is circling around a rough table while connected to a rope that passes through a hole in the center of the table down to cylinder A. Which of the following forces do we NOT identify as acting on the block B ?

(a) The weight of block B
(b) The weight of block A
(c) Tension
(d) Friction

Force Identification Exercise

Block B is circling around a rough table while connected to a rope that passes through a hole in the center of the table down to cylinder A. Which of the following forces do we NOT identify as acting on the block B ?

(a) The weight of block B
(b) The weight of block A
(c) Tension
(d) Friction
(e) The Normal force

Force Identification Exercise

Block B is circling around a rough table while connected to a rope that passes through a hole in the center of the table down to cylinder A. Which of the following forces do we NOT identify as acting on the block B ?

(a) The weight of block B
(b) The weight of block A
(c) Tension
(d) Friction
(e) The Normal force

Newton's First Law

First Law - The Law of Inertia
An object at rest stays at rest, an object in uniform motion stays if uniform motion if (and only if) the net force acting on the object is zero.

Newton's First Law

First Law - The Law of Inertia
An object at rest stays at rest, an object in uniform motion stays if uniform motion if (and only if) the net force acting on the object is zero.

Uniform motion - Straight line and constant speed, i.e, constant velocity.

Newton's First Law

First Law - The Law of Inertia
An object at rest stays at rest, an object in uniform motion stays if uniform motion if (and only if) the net force acting on the object is zero.

Uniform motion - Straight line and constant speed, i.e, constant velocity.

Inertia - The property of all matter to stay in motion if already in motion; to stay at rest if already at rest.

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

(a) $0 N$

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

(a) $0 N$
(b) 24.5 N

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

(a) $0 N$
(b) 24.5 N
(c) 49 N

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

(a) 0 N
(b) 24.5 N
(c) 49 N
(d) 98 N

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

(a) 0 N
(b) 24.5 N
(c) 49 N
(d) 98 N
(e) Not enough information to determine

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

(a) 0 N
(b) 24.5 N
(c) 49 N
(d) 98 N
(e) Not enough information to determine

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

Free-Body Diagram - f.b.d. - sketch of all the forces acting on an object using a convenient coordinate system.

First-Law Exercise I

A 5 kg mass is hung from the ceiling using a "massless" rope. What is the magnitude of the tension force exerted by the rope on the mass? Hint: A 5 kg mass has a weight of 49 N on earth where this problem is taking place.

Free-Body Diagram - f.b.d. - sketch of all the forces acting on an object using a convenient coordinate system.

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

(a) $0 N$

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

(a) $0 N$
(b) 24.5 N

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

(a) $0 N$
(b) 24.5 N
(c) 49 N

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

(a) $0 N$
(b) 24.5 N
(c) 49 N
(d) $98 N$

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

(a) $0 N$
(b) 24.5 N
(c) 49 N
(d) $98 N$
(e) Not enough information to determine

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

(a) $0 N$
(b) 24.5 N
(c) 49 N
(d) $98 N$
(e) Not enough information to determine

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

(a) $0 N$
(b) 24.5 N
(c) 49 N
(d) 98 N
(e) Not enough information to determine

First-Law Exercise II

Two 5 kg masses are connected to each over pulleys using a rope. What is the tension force that the rope exerts on the right-hand mass if they are both at rest?

(a) $0 N$
(b) 24.5 N
(c) 49 N
(d) 98 N
(e) Not enough information to determine

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(a) P must be much larger than $10 N$

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(a) P must be much larger than $10 N$
(b) P must be just a little bit bigger than 10 N

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(a) P must be much larger than $10 N$
(b) P must be just a little bit bigger than 10 N
(c) P must be exactly equal to 10 N

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(a) P must be much larger than $10 N$
(b) P must be just a little bit bigger than $10 N$
(c) P must be exactly equal to 10 N
(d) P must be just a little bit smaller than 10 N

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(a) P must be much larger than $10 N$
(b) P must be just a little bit bigger than $10 N$
(c) P must be exactly equal to 10 N
(d) P must be just a little bit smaller than 10 N
(e) P must be much smaller than $10 N$

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(a) P must be much larger than $10 N$
(b) P must be just a little bit bigger than 10 N
(c) P must be exactly equal to 10 N
(d) P must be just a little bit smaller than 10 N
(e) P must be much smaller than $10 N$

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(c) P must be exactly equal to 10 N

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(c) P must be exactly equal to $10 N$

Constant speed \Rightarrow uniform motion

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(c) P must be exactly equal to $10 N$

Constant speed \Rightarrow uniform motion $\Rightarrow \sum \overrightarrow{\mathbf{F}}=0$

First-Law Exercise III

A man pushes a crate across the floor with a constant speed. If there is 10 N of friction acting on the crate, which of the following statements about the man's pushing force, $\overrightarrow{\mathbf{P}}$, is correct?

(c) P must be exactly equal to 10 N

Constant speed \Rightarrow uniform motion $\Rightarrow \sum \overrightarrow{\mathbf{F}}=0$

$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow P_{x}+f_{k, x}=0 \\
& \Rightarrow P-10 N=0 \Rightarrow P=10 N
\end{aligned}
$$

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathbf{v}}$

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathrm{v}}$ Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathbf{v}}$ Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$. So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow$

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathbf{v}}$ Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$. So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathrm{v}}$ Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.

So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.

Forces cause acceleration

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathbf{v}}$ Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.

So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.

Forces cause acceleration

Newton found that the acceleration is:

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathbf{v}}$ Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.

So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.

Forces cause acceleration

Newton found that the acceleration is:
(a) In the same direction as the net force

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathbf{v}}$ Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.

So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.

Forces cause acceleration

Newton found that the acceleration is:
(a) In the same direction as the net force
(b) Directly proportional to the net force

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathbf{v}}$ Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.

So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.

Forces cause acceleration

Newton found that the acceleration is:
(a) In the same direction as the net force
(b) Directly proportional to the net force
(c) Inversely proportional to the mass

Newton's Second Law

The first law tells us that if $\Sigma \overrightarrow{\mathbf{F}}=0$ then we have a constant $\overrightarrow{\mathbf{v}}$
Constant $\overrightarrow{\mathrm{v}} \Rightarrow \overrightarrow{\mathrm{a}}=0$.
So if $\Sigma \overrightarrow{\mathbf{F}} \neq 0 \Rightarrow \overrightarrow{\mathbf{a}} \neq 0$.

Forces cause acceleration

Newton found that the acceleration is:
(a) In the same direction as the net force
(b) Directly proportional to the net force
(c) Inversely proportional to the mass

Measure of the amount of matter inside an object

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
m a
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
m a \Rightarrow k g \cdot m / s^{2}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
m a \Rightarrow k g \cdot m / s^{2}
$$

$$
\Sigma F
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
\begin{aligned}
& m a \Rightarrow k g \cdot m / s^{2} \\
& \Sigma F \Rightarrow N
\end{aligned}
$$

Second Law II

$$
\overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m} \Rightarrow \Sigma \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

No single force determines the acceleration.

Units: Newton is a unit simplification.

$$
\begin{aligned}
& m a \Rightarrow k g \cdot m / s^{2} \\
& \Sigma F \Rightarrow N \\
& N=k g \cdot m / s^{2}
\end{aligned}
$$

