June 17, Week 3

Today: Chapter 4, Forces

Homework \#3 is now available.

Quadrants

Sometimes your calculator will be wrong in finding angles!

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off
Quadrant I

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I $A_{x}=$ positive

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I
$A_{x}=$ negative	$A_{x}=$ positive
$A_{y}=$ positive	$A_{y}=$ positive

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I
$A_{x}=$ negative	$A_{x}=$ positive
$A_{y}=$ positive	$A_{y}=$ positive

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

> | Quadrant II | Quadrant I |
| :--- | :--- |
| $A_{x}=$ negative | $A_{x}=$ positive |
| $A_{y}=$ positive | $A_{y}=$ positive |
| Quadrant III | |
| $A_{x}=$ negative | |
| $A_{y}=$ negative | |

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I
$A_{x}=$ negative	$A_{x}=$ positive
$A_{y}=$ positive	$A_{y}=$ positive

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I			
$A_{x}=$ negative	$A_{x}=$ positive			
$A_{y}=$ positive	$A_{y}=$ positive	\quad	Quadrant III	Quadrant IV
:---	:---			
$A_{x}=$ negative	$A_{x}=$ positive			
$A_{y}=$ negative	$A_{y}=$ negative			

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$
(b) $\theta=-53^{\circ}$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$
(b) $\theta=-53^{\circ}$
(c) $\theta=307^{\circ}$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$
(b) $\theta=-53^{\circ}$
(c) $\theta=307^{\circ}$
(d) $\theta=233^{\circ}$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$
(b) $\theta=-53^{\circ}$
(c) $\theta=307^{\circ}$
(d) $\theta=233^{\circ}$
(e) $\theta=53^{\circ}$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$
(b) $\theta=-53^{\circ}$
(c) $\theta=307^{\circ}$
(d) $\theta=233^{\circ}$
(e) $\theta=53^{\circ}$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$

$$
\begin{aligned}
& \tan ^{-1}(-4 / 3)=-53^{\circ} \leftarrow \text { wrong quadrant } \\
& \theta=-53^{\circ}+180^{\circ}=127^{\circ}
\end{aligned}
$$

Component Exercise

Which of the following is the correct standard angle for the vector with components $x=-3 m, y=4 m$?
(a) $\theta=127^{\circ}$

$$
\begin{aligned}
& \tan ^{-1}(-4 / 3)=-53^{\circ} \leftarrow \text { wrong quadrant } \\
& \theta=-53^{\circ}+180^{\circ}=127^{\circ}
\end{aligned}
$$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathbf{A}}$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathbf{A}}$
Find the components of \vec{B}

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathbf{A}}$
Find the components of \vec{B}
Find the vector sum $\overrightarrow{\mathrm{R}}$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathbf{A}}$
Find the components of \vec{B}
Find the vector sum $\overrightarrow{\mathrm{R}}$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathrm{A}}$
Find the components of \vec{B}
Find the vector sum $\overrightarrow{\mathrm{R}}$
The components of $\overrightarrow{\mathrm{R}}$:

$$
R_{x}=A_{x}+B_{x} \quad R_{y}=A_{y}+B_{y}
$$

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Ignore air resistance again.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Ignore air resistance again.
Gravity pulls straight down, so it causes acceleration in the y-direction only.

$$
a_{x}=0, a_{y}=-g \quad(\text { Down is negative })
$$

Launch Angle

$\left(v_{x}\right)_{i}$ and $\left(v_{y}\right)_{i}$ are the components of the initial velocity vector. Usually, we are given the launch speed, v_{i} and angle, θ.

Launch Angle

$\left(v_{x}\right)_{i}$ and $\left(v_{y}\right)_{i}$ are the components of the initial velocity vector. Usually, we are given the launch speed, v_{i} and angle, θ.

$v_{i}=$ launch speed
$\theta=$ launch angle

Launch Angle

$\left(v_{x}\right)_{i}$ and $\left(v_{y}\right)_{i}$ are the components of the initial velocity vector. Usually, we are given the launch speed, v_{i} and angle, θ.

$$
\begin{aligned}
& v_{i}=\text { launch speed } \\
& \theta=\text { launch angle } \\
& \left(v_{x}\right)_{i}=v_{i} \cos \theta
\end{aligned}
$$

Launch Angle

$\left(v_{x}\right)_{i}$ and $\left(v_{y}\right)_{i}$ are the components of the initial velocity vector. Usually, we are given the launch speed, v_{i} and angle, θ.

$$
\begin{aligned}
& v_{i}=\text { launch speed } \\
& \theta=\text { launch angle } \\
& \left(v_{x}\right)_{i}=v_{i} \cos \theta \\
& \left(v_{y}\right)_{i}=v_{i} \sin \theta
\end{aligned}
$$

Summary

Projectile Equations

$a_{x}=0$	$a_{y}=-g$
$\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}$	$\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g \Delta t$
$x_{f}=x_{i}+\left(v_{x}\right)_{i} \Delta t$	$y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t-\frac{1}{2} g \Delta t^{2}$
$\left(v_{x}\right)_{i}=v_{i} \cos \theta$	$\left(v_{y}\right)_{i}=v_{i} \sin \theta$

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(a) The first tennis ball.

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(a) The first tennis ball.
(b) The second tennis ball.

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(a) The first tennis ball. (b) The second tennis ball.
(c) It depends on how fast the first is launched.

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(a) The first tennis ball. (b) The second tennis ball.
(c) It depends on how fast the first is launched.
(d) They hit at the same time.

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(a) The first tennis ball. (b) The second tennis ball.
(c) It depends on how fast the first is launched.
(d) They hit at the same time. (e) None of these are correct.

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(a) The first tennis ball. (b) The second tennis ball.
(c) It depends on how fast the first is launched.
(d) They hit at the same time.
(e) None of these are correct.

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(d) They hit at the same time.

For each ball: $y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t-\frac{1}{2} g \Delta t^{2}$

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(d) They hit at the same time.

For each ball: $y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t-\frac{1}{2} g \Delta t^{2}$
For each ball: $y_{f}=0$ and $y_{i}=h=$ the height at which they are launched

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(d) They hit at the same time.

For each ball: $y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t-\frac{1}{2} g \Delta t^{2}$
For each ball: $y_{f}=0$ and $y_{i}=h=$ the height at which they are launched

For each ball: $\left(v_{y}\right)_{i}=0$ since a horizontal vector (one to the right) has no y-component. $\longrightarrow \overrightarrow{\mathrm{v}}_{i}$

Projectile Motion Exercise

Two tennis balls are started from the same height above the ground at the exact same time. The first tennis ball is launched horizontally with some unknown speed. The second tennis ball is simply dropped. Ignoring air resistance, which of the two hits the ground first?
(d) They hit at the same time.

For each ball: $y_{f}=y_{i}+\left(v_{y}\right)_{i} \Delta t-\frac{1}{2} g \Delta t^{2}$
For each ball: $y_{f}=0$ and $y_{i}=h=$ the height at which they are launched

For each ball: $\left(v_{y}\right)_{i}=0$ since a horizontal vector (one to the right) has no y-component. $\longrightarrow \overrightarrow{\mathrm{v}}_{i}$

For each ball: Their vertical motion is the same \Rightarrow the same Δt !

Dynamics

Dynamics - Why objects move.

Dynamics

Dynamics - Why objects move.

Sir Isaac Newton (1642-1727) British Physicist, In 1687 he published the Philosophiæ Naturalis Principia Mathematica. The Principia details how all motion can be explained by one of three simple statements = Newton's Three Laws of Motion.

Exceptions

These three laws are still in use; however, they need modification in two situations:

Exceptions

These three laws are still in use; however, they need modification in two situations:

When an object's velocity approaches the speed of light

Exceptions

These three laws are still in use; however, they need modification in two situations:

When an object's velocity approaches the speed of light - Einstein's theory of relativity.

Exceptions

These three laws are still in use; however, they need modification in two situations:

When an object's velocity approaches the speed of light - Einstein's theory of relativity.

Motion of atomic-sized objects

Exceptions

These three laws are still in use; however, they need modification in two situations:

When an object's velocity approaches the speed of light - Einstein's theory of relativity.

Motion of atomic-sized objects - Quantum Mechanics (Also started by Einstein).

Force

Underlying all three of Newton's Laws is the concept of force.

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent
Two types of forces:

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent
Two types of forces:
Contact Forces - Two objects in contact.

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent
Two types of forces:
Contact Forces - Two objects in contact.
Long-range Forces - Act at a distance. Examples = gravity, magnetism.

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent
Two types of forces:
Contact Forces - Two objects in contact.
Long-range Forces - Act at a distance. Examples = gravity, magnetism.

Weight $-\overrightarrow{\mathrm{w}}$, Force on an object due to gravity.

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent
Two types of forces:
Contact Forces - Two objects in contact.
Long-range Forces - Act at a distance. Examples = gravity, magnetism.

Weight $-\overrightarrow{\mathrm{w}}$, Force on an object due to gravity.
Unit of Force:

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent
Two types of forces:
Contact Forces - Two objects in contact.
Long-range Forces - Act at a distance. Examples = gravity, magnetism.

Weight $-\overrightarrow{\mathrm{w}}$, Force on an object due to gravity.
Unit of Force: U. S. Customary: Pound (lb)

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent
Two types of forces:
Contact Forces - Two objects in contact.
Long-range Forces - Act at a distance. Examples = gravity, magnetism.

Weight $-\overrightarrow{\mathrm{w}}$, Force on an object due to gravity.
Unit of Force: U. S. Customary: Pound (lb)
S. I. : Newton (N),

Force

Underlying all three of Newton's Laws is the concept of force.
Force, $\overrightarrow{\mathbf{F}}$ - Push or Pull exerted by some agent
Two types of forces:
Contact Forces - Two objects in contact.
Long-range Forces - Act at a distance. Examples = gravity, magnetism.

Weight $-\overrightarrow{\mathrm{w}}$, Force on an object due to gravity.
Unit of Force: U. S. Customary: Pound (lb)
S. I. : Newton $(N), 1 N=0.22 \mathrm{lb}$ (on Earth)

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

Superposition

Usually there is more than one force acting on an object.

$$
\begin{aligned}
& \text { Superposition - The net } \\
& \text { result of two or more } \\
& \text { forces is given by the } \\
& \text { vector sum. } \\
& \Sigma \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3} \ldots
\end{aligned}
$$

Superposition

Usually there is more than one force acting on an object.

> Superposition - The net result of two or more forces is given by the vector sum.
> $\Sigma \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3} \ldots$

Superposition

Usually there is more than one force acting on an object.

