June 16, Week 3

Today: Chapter 3, Projectile Motion

Homework \#3 is now available.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Only guaranteed to work for the standard angle

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

$$
\tan \theta=\frac{A_{y}}{A_{x}}
$$

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Arctangent

$$
A^{2}=A_{x}^{2}+A_{y}^{2}
$$

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Example: Find the magnitude and direction for the vector with components $A_{x}=1 \mathrm{~m}$ and $A_{y}=1 \mathrm{~m}$.

Quadrants

Sometimes your calculator will be wrong in finding angles!

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant I

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant I
$A_{x}=$ positive
$A_{y}=$ positive

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I $A_{x}=$ positive

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

$$
\begin{array}{l|l}
\text { Quadrant II } & \text { Quadrant I } \\
A_{x}=\text { negative } & A_{x}=\text { positive } \\
A_{y}=\text { positive } & A_{y}=\text { positive }
\end{array}
$$

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I
$A_{x}=$ negative	$A_{x}=$ positive
$A_{y}=$ positive	$A_{y}=$ positive

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

> | Quadrant II | Quadrant I |
| :--- | :--- |
| $A_{x}=$ negative | $A_{x}=$ positive |
| $A_{y}=$ positive | $A_{y}=$ positive |
| Quadrant III | |
| $A_{x}=$ negative | |
| $A_{y}=$ negative | |

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I
$A_{x}=$ negative	$A_{x}=$ positive
$A_{y}=$ positive	$A_{y}=$ positive

Quadrants

Sometimes your calculator will be wrong in finding angles!
Example: Find the magnitude and direction for the vector with components $A_{x}=-1 m$ and $A_{y}=-1 m$.

When your calculator is wrong, it's always 180° off

Quadrant II	Quadrant I			
$A_{x}=$ negative	$A_{x}=$ positive			
$A_{y}=$ positive	$A_{y}=$ positive	\quad	Quadrant III	Quadrant IV
:---	:---			
$A_{x}=$ negative	$A_{x}=$ positive			
$A_{y}=$ negative	$A_{y}=$ negative			

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

$$
\text { Assume: } \overrightarrow{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}
$$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathbf{A}}$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathbf{A}}$
Find the components of \vec{B}

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathbf{A}}$
Find the components of \vec{B}
Find the vector sum $\overrightarrow{\mathrm{R}}$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathbf{A}}$
Find the components of \vec{B}
Find the vector sum $\overrightarrow{\mathrm{R}}$

Component Addition

While we cannot add the magnitudes of vectors. We can add the components.

Assume: $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
Find the components of $\overrightarrow{\mathrm{A}}$
Find the components of \vec{B}
Find the vector sum $\overrightarrow{\mathrm{R}}$
The components of $\overrightarrow{\mathrm{R}}$:

$$
R_{x}=A_{x}+B_{x} \quad R_{y}=A_{y}+B_{y}
$$

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

To locate an object, we have to give two numbers: (x, y). They are the cartesian coordinates AND they are the components of the position vector.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

To locate an object, we have to give two numbers: (x, y). They are the cartesian coordinates AND they are the components of the position vector.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

To locate an object, we have to give two numbers: (x, y). They are the cartesian coordinates AND they are the components of the position vector.

Two-Dimensional Motion

To describe motion, we still need to know position, velocity, and acceleration at all times.

In 2D, this means we have to know the components of the position, velocity, and acceleration vectors.

To locate an object, we have to give two numbers: (x, y). They are the cartesian coordinates AND they are the components of the position vector.

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Velocity Components

In curved motion, the path taken by a moving object is called its trajectory

There are two separate position plots which give the velocity vector's components

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Curved Motion II

On the trajectory plot, the velocity vector is described as being "tangent" to the curve.

The velocity vector is at the same angle as the slope of the trajectory graph.

Line with same
slope as trajectory graph

Speed is the magnitude of the velocity vector

$$
\Rightarrow v=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

Acceleration Components

We can find the acceleration
components in the same way as
velocity

Acceleration Components

We can find the acceleration
components in the same way as
velocity

Acceleration Components

We can find the acceleration
components in the same way as
velocity

Acceleration Components

We can find the acceleration
components in the same way as
velocity

Acceleration Components

We can find the acceleration
components in the same way as
velocity

Acceleration Components

We can find the acceleration
components in the same way as
velocity

Acceleration Components

We can find the acceleration
components in the same way as
velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity
There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity

There are two separate VELOCITY plots which give the acceleration vector's components

Acceleration Components

We can find the acceleration components in the same way as velocity
There are two separate VELOCITY plots which give the acceleration vector's components

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Ignore air resistance again.

Projectile Motion

Projectile Motion is one example of two-dimensional motion with a constant acceleration.

Projectile - Any object that is launched into motion and then acted on by gravity only.

Ignore air resistance again.
Gravity pulls straight down, so it causes acceleration in the y-direction only.

$$
a_{x}=0, a_{y}=-g \quad(\text { Down is negative })
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t}
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
\left.a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}\right) \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
\left.a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i}\right) \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations

$a_{x}=0$ means that there is no change in the x-component of velocity \Rightarrow uniform motion in x.

$$
a_{x}=0=\frac{\left(v_{x}\right)_{f}-\left(v_{x}\right)_{i}}{\Delta t} \Rightarrow\left(v_{x}\right)_{f}=\left(v_{x}\right)_{i} \leftarrow \text { no change }
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t}
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

Projectile Equations II

$a_{y}=-g$ means that there is change in the y-component of velocity. Gravity is constant \Rightarrow constant acceleration motion.

$$
a_{y}=-g=\frac{\left(v_{y}\right)_{f}-\left(v_{y}\right)_{i}}{\Delta t} \Rightarrow\left(v_{y}\right)_{f}=\left(v_{y}\right)_{i}-g(\Delta t)
$$

