June 12, Week 2

Today: Chapter 3, Vectors

Homework \#2 due tomorrow

No reading quiz for Monday

Please register your clicker. (There are 2 students without registered clickers.)

Vector-Exercise Followup

If $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at 37°, which of the following drawing correctly shows $\overrightarrow{\mathbf{B}}=5 \mathrm{~m} / \mathrm{s}$ at 135° and $\overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s}$ at 330° ?

Vector-Exercise Followup

If $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at 37°, which of the following drawing correctly shows $\overrightarrow{\mathbf{B}}=5 \mathrm{~m} / \mathrm{s}$ at 135° and $\overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s}$ at 330° ?

Vector-Exercise Followup

If $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at 37°, which of the following drawing correctly shows $\overrightarrow{\mathbf{B}}=5 \mathrm{~m} / \mathrm{s}$ at 135° and $\overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s}$ at 330° ?

Vector-Exercise Followup

If $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at 37°, which of the following drawing correctly shows $\overrightarrow{\mathbf{B}}=5 \mathrm{~m} / \mathrm{s}$ at 135° and $\overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s}$ at 330° ?

Vector-Exercise Followup

If $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at 37°, which of the following drawing correctly shows $\overrightarrow{\mathbf{B}}=5 \mathrm{~m} / \mathrm{s}$ at 135° and $\overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s}$ at 330° ?

$2 \times$ longer than $\overrightarrow{\mathbf{A}}$
$\underset{\overrightarrow{\mathrm{C}}}{\overrightarrow{\mathrm{C}} \quad \text { Equal length to } \overrightarrow{\mathrm{A}} \text {. }}$

Vector-Exercise Followup

If $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at 37°, which of the following drawing correctly shows $\overrightarrow{\mathbf{B}}=5 \mathrm{~m} / \mathrm{s}$ at 135° and $\overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s}$ at 330° ?

Vector-Exercise Followup

If $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at 37°, which of the following drawing correctly shows $\overrightarrow{\mathbf{B}}=5 \mathrm{~m} / \mathrm{s}$ at 135° and $\overrightarrow{\mathbf{C}}=10 \mathrm{~m} / \mathrm{s}$ at 330° ?

Scalar Multiplication

Multiplying a vector by a scalar changes the magnitude but not the direction of a vector.
Example: $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at $37^{\circ}, \quad 3 \overrightarrow{\mathbf{A}}=$

Scalar Multiplication

Multiplying a vector by a scalar changes the magnitude but not the direction of a vector.

$$
\text { Example: } \overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ}, \quad 3 \overrightarrow{\mathbf{A}}=15 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ}
$$

Scalar Multiplication

Multiplying a vector by a scalar changes the magnitude but not the direction of a vector.
Example: $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at $37^{\circ}, \quad 3 \overrightarrow{\mathbf{A}}=15 \mathrm{~m} / \mathrm{s}$ at 37°
One "exception": Negative numbers change magnitude and flip direction by 180°.

Scalar Multiplication

Multiplying a vector by a scalar changes the magnitude but not the direction of a vector.
Example: $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at $37^{\circ}, \quad 3 \overrightarrow{\mathbf{A}}=15 \mathrm{~m} / \mathrm{s}$ at 37°
One "exception": Negative numbers change magnitude and flip direction by 180°.

Scalar Multiplication

Multiplying a vector by a scalar changes the magnitude but not the direction of a vector.

$$
\text { Example: } \overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ}, \quad 3 \overrightarrow{\mathbf{A}}=15 \mathrm{~m} / \mathrm{s} \text { at } 37^{\circ}
$$

One "exception": Negative numbers change magnitude and flip direction by 180°.

Scalar Multiplication

Multiplying a vector by a scalar changes the magnitude but not the direction of a vector.
Example: $\overrightarrow{\mathbf{A}}=5 \mathrm{~m} / \mathrm{s}$ at $37^{\circ}, \quad 3 \overrightarrow{\mathbf{A}}=15 \mathrm{~m} / \mathrm{s}$ at 37°
One "exception": Negative numbers change magnitude and flip direction by 180°.

Of particular interest:
$\overrightarrow{\mathrm{A}}=-\overrightarrow{\mathrm{B}}$
\Rightarrow equal magnitude but opposite direction

- equal but opposite

Vector Addition

Vector Addition - The net result of two or more vectors, i.e., taking direction into account while adding.

Vector Addition

Vector Addition - The net result of two or more vectors, i.e., taking direction into account while adding.

There are two methods of adding vectors - the graphical and component methods.

Vector Addition

Vector Addition - The net result of two or more vectors, i.e., taking direction into account while adding.

There are two methods of adding vectors - the graphical and component methods.

Graphical Addition - Drawing pictures and placing the vectors, "tip-to-tail" in order to determine the vector sum.

Vector Addition

Vector Addition - The net result of two or more vectors, i.e., taking direction into account while adding.

There are two methods of adding vectors - the graphical and component methods.

Graphical Addition - Drawing pictures and placing the vectors, "tip-to-tail" in order to determine the vector sum.

Component Addition - Uses trigonometry to calculate the vector sum.

Graphical Addition Example

Add the following vectors.

Graphical Addition Example

Add the following vectors.

Vectors can be drawn at any point as long as the magnitude and direction don't change

Graphical Addition Example

Add the following vectors.

Vectors can be drawn at any point as long as the magnitude and direction don't change

First redraw $\overrightarrow{\mathrm{A}}$

Graphical Addition Example

Add the following vectors.

Vectors can be drawn at any point as long as the magnitude and direction don't change

Then redraw $\overrightarrow{\mathrm{B}}$
First redraw $\overrightarrow{\mathrm{A}}$

Graphical Addition Example

Add the following vectors.

Vectors can be drawn at any point as long as the magnitude and direction don't change

Then redraw $\overrightarrow{\mathrm{B}}$

First redraw $\overrightarrow{\mathbf{A}}$

The vector sum or resultant, $\overrightarrow{\mathbf{R}}$, goes from the remaining tail to tip.

Graphical Addition Example

Add the following vectors.

A carefully drawn picture can give magnitude and direction of $\overrightarrow{\mathbf{R}}$. Simply use a ruler and protractor

Vectors can be drawn at any point as long as the magnitude and direction don't change

Then redraw $\overrightarrow{\mathrm{B}}$
First redraw $\overrightarrow{\mathrm{A}}$

The vector sum or resultant, $\overrightarrow{\mathbf{R}}$, goes from the remaining tail to tip.

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

First do $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

First do $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

First do $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

First do $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$
Now do $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

First do $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$
Now do $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}
$$

First do $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$

Now do $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}
$$

First do $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$

Now do $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$

Vector Addition is Commutative

You can add vectors in either order and the answer is the same!

$$
\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}
$$

First do $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$
Now do $\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}$

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$?

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$?

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

Vector Addition Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{R}}$, where $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$?

Vector Subtraction

The previous example contained two vector subtractions.

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\vec{B}-\vec{A}$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}}$

$\xrightarrow{\vec{B} \xrightarrow[A]{ }} \overrightarrow{ }$
Traditionally: $\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}}=$ $\overrightarrow{\mathrm{B}}+(-\overrightarrow{\mathrm{A}})$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\vec{B}-\vec{A}$

$\overbrace{-\overrightarrow{\mathbf{A}}}^{\substack{\overrightarrow{\mathbf{B}} \\ \overrightarrow{\mathbf{B}}+(-\overrightarrow{\mathbf{A}})}}$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}$

$$
-\overrightarrow{\mathrm{A}} \stackrel{\overrightarrow{\mathrm{~B}}}{\longrightarrow} \left\lvert\, \begin{aligned}
& \text { Traditionally } \\
& \overrightarrow{\mathbf{B}}+(-\overrightarrow{\mathbf{A}})
\end{aligned}\right.
$$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}}$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\vec{B}-\overrightarrow{\mathrm{A}}$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}}$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\vec{B}-\vec{A}$

Vector Subtraction

The previous example contained two vector subtractions.
These are both $\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}$

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$?

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$?

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$?

(b)

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$?

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$?

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$?

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$?

(b)

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$?

(b)

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$?

(b)

Vector Subtraction Exercise

For the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, which of the following correctly shows $\overrightarrow{\mathrm{C}}$, where $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}$?

The Position and Velocity Vectors

Physics uses many vector subtractions.

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathbf{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathbf{r}}_{f}$.

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathbf{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathrm{r}}_{f}$.

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathbf{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathrm{r}}_{f}$.

Final Position

-

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathbf{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathrm{r}}_{f}$.

Final Position

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathbf{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathrm{r}}_{f}$.

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathbf{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathrm{r}}_{f}$.

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathbf{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathrm{r}}_{f}$.

Position vectors are from the origin.

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathrm{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathrm{r}}_{f}$.

Position vectors are from the origin.

The average velocity vector is parallel to $\overrightarrow{\Delta \mathrm{r}}$ since $\overrightarrow{\mathrm{v}}_{a v}=\frac{\overrightarrow{\Delta \mathrm{r}}}{\Delta t}$
(Textbook is not careful here and just calls it the velocity!)

The Position and Velocity Vectors

Physics uses many vector subtractions.
The displacement vector $\overrightarrow{\Delta \mathbf{r}}=\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{i}$ is a vector subtraction.
$\Rightarrow \overrightarrow{\Delta \mathrm{r}}$ points from $\overrightarrow{\mathbf{r}}_{i}$ to $\overrightarrow{\mathrm{r}}_{f}$.

Position vectors are from the origin.

The average velocity vector is parallel to $\overrightarrow{\Delta \mathrm{r}}$ since $\overrightarrow{\mathrm{v}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{r}}}{\Delta t}$
(Textbook is not careful here and just calls it the velocity!)

The Acceleration Vector

Acceleration is the rate at which the velocity changes

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$
$1 \cdot \cdot 2$
$0 \bullet$

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$

For point 1: $\overrightarrow{\Delta \mathbf{v}}$ from $\overrightarrow{\mathrm{v}}_{i}$ to $\overrightarrow{\mathrm{v}}_{f}$ but we have to redraw them starting from the same place

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$

For point 1: $\overrightarrow{\Delta \mathbf{v}}$ from \vec{v}_{i} to \vec{v}_{f} but we have to redraw them starting from the same place

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$

For point 1: $\quad \overrightarrow{\Delta \mathbf{v}}$ from $\overrightarrow{\mathrm{v}}_{i}$ to $\overrightarrow{\mathrm{v}}_{f}$ but we have to redraw them starting from the same place

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$

For point 1: $\quad \overrightarrow{\Delta \mathbf{v}}$ from $\overrightarrow{\mathrm{v}}_{i}$ to $\overrightarrow{\mathrm{v}}_{f}$ but we have to redraw them starting from the same place

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$

For point 1: $\quad \overrightarrow{\Delta \mathbf{v}}$ from $\overrightarrow{\mathrm{v}}_{i}$ to $\overrightarrow{\mathrm{v}}_{f}$ but we have to redraw them starting from the same place

The Acceleration Vector

Acceleration is the rate at which the velocity changes
A change in speed $O R$ direction means an object is accelerating
The average acceleration vector: $\overrightarrow{\mathbf{a}}_{a v}=\frac{\overrightarrow{\Delta \mathbf{v}}}{\Delta t} \Rightarrow \overrightarrow{\mathbf{a}}_{a v}$ in same direction as $\overrightarrow{\Delta \mathbf{v}}$
 Acceleration can be in a completely different direction than the motion

For point 1: $\quad \overrightarrow{\Delta \mathbf{v}}$ from $\overrightarrow{\mathrm{v}}_{i}$ to $\overrightarrow{\mathrm{v}}_{f}$ but we have to redraw them starting from the same place

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the components are the horizontal and vertical lengths from tip to tail.

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the components are the horizontal and vertical lengths from tip to tail.

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the components are the horizontal and vertical lengths from tip to tail.

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the components are the horizontal and vertical lengths from tip to tail.

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the components are the horizontal and vertical lengths from tip to tail.

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the components are the horizontal and vertical lengths from tip to tail.
$\overrightarrow{\mathbf{A}}_{x}, \overrightarrow{\mathbf{A}}_{y}$ are the vector components.

Components

From now on, we'll use the familiar Cartesian coordinate system, (x, y).

The components of a vector are the "pieces" of the vector parallel to the x and y axes.

Mathematically, the components are the horizontal and vertical lengths from tip to tail.
$\overrightarrow{\mathbf{A}}_{x}, \overrightarrow{\mathbf{A}}_{y}$ are the vector components.
The components and the original vector are related by vector addition: $\overrightarrow{\mathbf{A}}_{x}+\overrightarrow{\mathbf{A}}_{y}=\overrightarrow{\mathbf{A}}$.

Vector and Scalar Components

Vector and Scalar Components

$\overrightarrow{\mathbf{A}}_{x}, \overrightarrow{\mathbf{A}}_{y}, \overrightarrow{\mathbf{B}}_{x}, \overrightarrow{\mathbf{B}}_{y}=$ Vector Components

Vector and Scalar Components

$\overrightarrow{\mathbf{A}}_{x}, \overrightarrow{\mathbf{A}}_{y}, \overrightarrow{\mathbf{B}}_{x}, \overrightarrow{\mathbf{B}}_{y}=$ Vector Components
$A_{x}, A_{y}, B_{x}, B_{y}$ and their signs $=$ Scalar Components

Scalar Component Exercise

Which of the following vectors has negative x and positive y scalar components?

Scalar Component Exercise

Which of the following vectors has negative x and positive y scalar components?

Scalar Component Exercise

Which of the following vectors has negative x and positive y scalar components?

Scalar Component Exercise

Which of the following vectors has negative x and positive y scalar components?

Scalar Component Exercise

Which of the following vectors has negative x and positive y scalar components?

Scalar Component Exercise

Which of the following vectors has negative x and positive y scalar components?

Scalar Component Exercise

Which of the following vectors has negative x and positive y scalar components?

Scalar Component Followup

Scalar Component Followup

Scalar Component Followup

Scalar Component Followup

A_{x} positive
A_{y} positive

Scalar Component Followup

A_{x} positive A_{y} positive

Scalar Component Followup

Scalar Component Followup

A_{x} positive A_{y} positive

B_{x} negative
$\overrightarrow{\mathrm{B}} \quad B_{y}$ negative

Scalar Component Followup

A_{x} positive A_{y} positive

B_{x} negative
$\overrightarrow{\mathrm{B}} \quad B_{y}$ negative

Scalar Component Followup

A_{x} positive A_{y} positive

B_{x} negative
$\overrightarrow{\mathrm{B}} \quad B_{y}$ negative

Scalar Component Followup

A_{x} positive A_{y} positive

B_{x} negative
$\overrightarrow{\mathrm{B}} \quad B_{y}$ negative

Scalar Component Followup

D_{x} positive
D_{y} negative

Scalar Component Followup

D_{x} positive D_{y} negative

Scalar Component Followup

D_{x} positive D_{y} negative

Scalar Component Followup

D_{x} positive
D_{y} negative

E_{x} negative
E_{y} positive

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.
Trigonometry - The mathematics of right $\left(90^{\circ}\right)$ triangles. Uses the fact that the ratio of the lengths of the sides of right triangle is always the same for the same angle.

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.
Trigonometry - The mathematics of right $\left(90^{\circ}\right)$ triangles. Uses the fact that the ratio of the lengths of the sides of right triangle is always the same for the same angle.

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.
Trigonometry - The mathematics of right $\left(90^{\circ}\right)$ triangles. Uses the fact that the ratio of the lengths of the sides of right triangle is always the same for the same angle.

$$
H Y P=\text { Length of the Hypotenuse }
$$

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.
Trigonometry - The mathematics of right $\left(90^{\circ}\right)$ triangles. Uses the fact that the ratio of the lengths of the sides of right triangle is always the same for the same angle.

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Trigonometry - The mathematics of right $\left(90^{\circ}\right)$ triangles. Uses the fact that the ratio of the lengths of the sides of right triangle is always the same for the same angle.

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Trigonometry - The mathematics of right $\left(90^{\circ}\right)$ triangles. Uses the fact that the ratio of the lengths of the sides of right triangle is always the same for the same angle.

$H Y P=$ Length of the Hypotenuse
$O P P=$ Length of Opposite Side
$A D J=$ Length of Adjacent Side
Sine Function: $\sin \theta=\frac{O P P}{H Y P}$

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Trigonometry - The mathematics of right $\left(90^{\circ}\right)$ triangles. Uses the fact that the ratio of the lengths of the sides of right triangle is always the same for the same angle.

Sine Function: $\sin \theta=\frac{O P P}{H Y P}$
Cosine Function: $\cos \theta=\frac{A D J}{H Y P}$

Trigonometry

The scalar components' numerical values are found using trigonometry since the magnitude and the scalar components always form a right triangle.

Trigonometry - The mathematics of right $\left(90^{\circ}\right)$ triangles. Uses the fact that the ratio of the lengths of the sides of right triangle is always the same for the same angle.

$A D J$
Cosine Function: $\cos \theta=\frac{A D J}{H Y P}$
Sine Function: $\sin \theta=\frac{O P P}{H Y P}$
Tangent Function: $\tan \theta=\frac{O P P}{A D J}$

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Scalar Components

In physics, the sides of the right triangle are the scalar components.

Only guaranteed to work for the standard angle

Component Exercise

Find the components of the vector $\overrightarrow{\mathbf{r}}=5 \mathrm{~m}$ at 110°.

Component Exercise

Find the components of the vector $\overrightarrow{\mathbf{r}}=5 \mathrm{~m}$ at 110°.
(a) $x=1.71 \mathrm{~m}, y=4.7 \mathrm{~m}$

Component Exercise

Find the components of the vector $\overrightarrow{\mathbf{r}}=5 \mathrm{~m}$ at 110°.
(a) $x=1.71 \mathrm{~m}, y=4.7 \mathrm{~m}$
(b) $x=1.71 m, y=-4.7 m$

Component Exercise

Find the components of the vector $\overrightarrow{\mathbf{r}}=5 \mathrm{~m}$ at 110°.
(a) $x=1.71 \mathrm{~m}, y=4.7 \mathrm{~m}$
(b) $x=1.71 m, y=-4.7 m$
(c) $x=-1.71 m, y=4.7 m$

Component Exercise

Find the components of the vector $\overrightarrow{\mathbf{r}}=5 \mathrm{~m}$ at 110°.
(a) $x=1.71 \mathrm{~m}, y=4.7 \mathrm{~m}$
(b) $x=1.71 m, y=-4.7 m$
(c) $x=-1.71 m, y=4.7 m$
(d) $x=-1.71 m, y=-4.7 m$

Component Exercise

Find the components of the vector $\overrightarrow{\mathbf{r}}=5 \mathrm{~m}$ at 110°.
(a) $x=1.71 m, y=4.7 \mathrm{~m}$
(b) $x=1.71 m, y=-4.7 m$
(c) $x=-1.71 m, y=4.7 m$
(d) $x=-1.71 m, y=-4.7 m$
(e) Intentionally left blank.

Component Exercise

Find the components of the vector $\overrightarrow{\mathbf{r}}=5 \mathrm{~m}$ at 110°.
(a) $x=1.71 m, y=4.7 \mathrm{~m}$
(b) $x=1.71 m, y=-4.7 m$
(c) $\quad x=-1.71 m, y=4.7 m$
(d) $x=-1.71 m, y=-4.7 m$
(e) Intentionally left blank.

Component Exercise

Find the components of the vector $\overrightarrow{\mathbf{r}}=5 \mathrm{~m}$ at 110°.

$$
\text { (c) } \quad x=-1.71 m, y=4.7 m
$$

Using the standard angle automatically gives correct signs:

$$
\begin{aligned}
& x=(5 m) \cos 110^{\circ}=-1.71 m \\
& y=(5 m) \sin 110^{\circ}=4.7 m
\end{aligned}
$$

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

$$
\tan \theta=\frac{A_{y}}{A_{x}}
$$

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Arctangent

$$
A^{2}=A_{x}^{2}+A_{y}^{2}
$$

Scalar Components II

To find the magnitude and the angle from the components:

Scalar Components II

To find the magnitude and the angle from the components:

Example: Find the magnitude and direction for the vector with components $A_{x}=1 \mathrm{~m}$ and $A_{y}=1 \mathrm{~m}$.

