June 11, Week 2

Today: Finish Chapter 2, Constant Acceleration Problems and start Chapter 3, Vectors

Homework #2 now available on webpage

Please register your clicker. (There are 5 students without registered clickers.)

Example I

$$x_f = x_i + (v_x)_i \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$(v_x)_f = (v_x)_i + a_x \Delta t$$

$$(v_x)_f^2 = (v_x)_i^2 + 2a_x \Delta x$$

Example: Phyllis is traveling on a straight highway with a speed of $30.0\,m/s$ and wishes to pass Stanley who is in the car in front of her. Phyllis hits the gas causing a constant acceleration of $1.25\,m/s^2$. After going $150\,m$, phyllis is a safe distance in front of Stanley, so she decelerates back down to $30.0\,m/s$ in $5.0\,s$. How long did it take and what total distance did Phyllis cover while passing Stanley? Assume Phyllis stayed in the same lane the whole time.

Example II

$$y_f = y_i + (v_y)_i \Delta t + \frac{1}{2} a_y (\Delta t)^2$$

$$(v_y)_f = (v_y)_i + a_y \Delta t$$

$$(v_y)_f^2 = (v_y)_i^2 + 2a_y \Delta y$$

Example: A man is in a hot-air balloon which takes off and rises with a constant $2.5 \, m/s$ speed. Just after take off, the man notices that he forgot his camera. A "friend" throws the camera up to him with a speed of $15 \, m/s$. If the man is $2 \, m$ above the camera when it is thrown, how high will he be when he caches his camera?

To describe two-dimensional (and three-dimensional) motion completely, we need to be able to indicate any arbitrary direction. We do this through the use of vectors.

To describe two-dimensional (and three-dimensional) motion completely, we need to be able to indicate any arbitrary direction. We do this through the use of vectors.

<u>Vector</u> - Any physical quantity which has a magnitude and direction associated with it.

To describe two-dimensional (and three-dimensional) motion completely, we need to be able to indicate any arbitrary direction. We do this through the use of vectors.

<u>Vector</u> - Any physical quantity which has a magnitude and direction associated with it.

Magnitude - Positive number along with unit that expresses the "amount" of the vector.

To describe two-dimensional (and three-dimensional) motion completely, we need to be able to indicate any arbitrary direction. We do this through the use of vectors.

<u>Vector</u> - Any physical quantity which has a magnitude and direction associated with it.

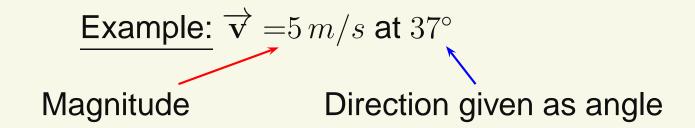
Magnitude - Positive number along with unit that expresses the "amount" of the vector.

Example:
$$\overrightarrow{\mathbf{v}} = 5 \, m/s$$
 at 37°

To describe two-dimensional (and three-dimensional) motion completely, we need to be able to indicate any arbitrary direction. We do this through the use of vectors.

<u>Vector</u> - Any physical quantity which has a magnitude and direction associated with it.

Magnitude - Positive number along with unit that expresses the "amount" of the vector.



To describe two-dimensional (and three-dimensional) motion completely, we need to be able to indicate any arbitrary direction. We do this through the use of vectors.

<u>Vector</u> - Any physical quantity which has a magnitude and direction associated with it.

Magnitude - Positive number along with unit that expresses the "amount" of the vector.

Example: $\overrightarrow{\mathbf{v}} = 5 \, m/s$ at 37° Magnitude Direction given as angle

We also write: v = 5 m/s

To describe two-dimensional (and three-dimensional) motion completely, we need to be able to indicate any arbitrary direction. We do this through the use of vectors.

<u>Vector</u> - Any physical quantity which has a magnitude and direction associated with it.

Magnitude - Positive number along with unit that expresses the "amount" of the vector.

Example:
$$\overrightarrow{\mathbf{v}} = 5 \, m/s$$
 at 37°

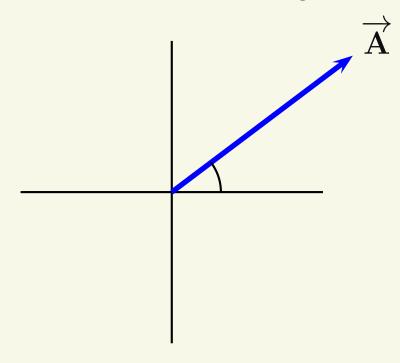
Magnitude Direction given as angle

We also write: v = 5 m/s

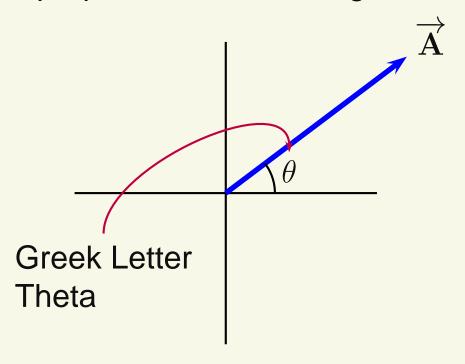
Scalars - Any physical quantity without an associated direction.

To represent a vector, we use an arrow whose length is proportional to the magnitude.

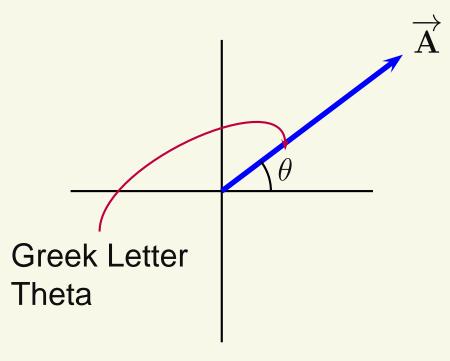
To represent a vector, we use an arrow whose length is proportional to the magnitude.



To represent a vector, we use an arrow whose length is proportional to the magnitude.

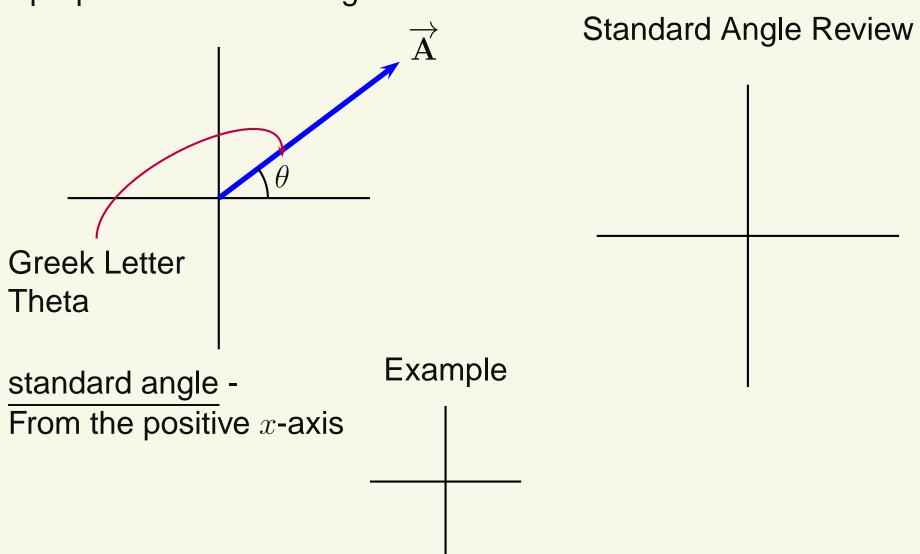


To represent a vector, we use an arrow whose length is proportional to the magnitude.

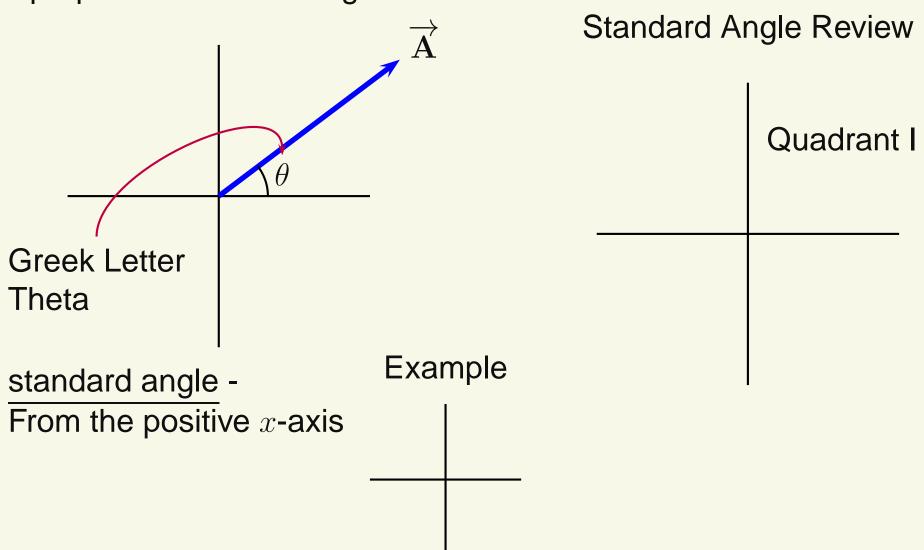


 $\frac{\text{standard angle}}{\text{From the positive } x\text{-axis}}$

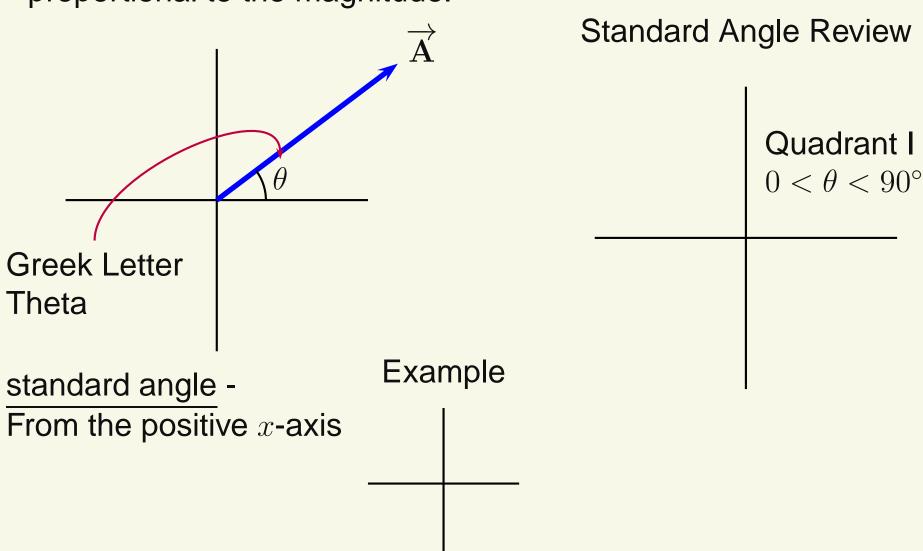
To represent a vector, we use an arrow whose length is proportional to the magnitude.



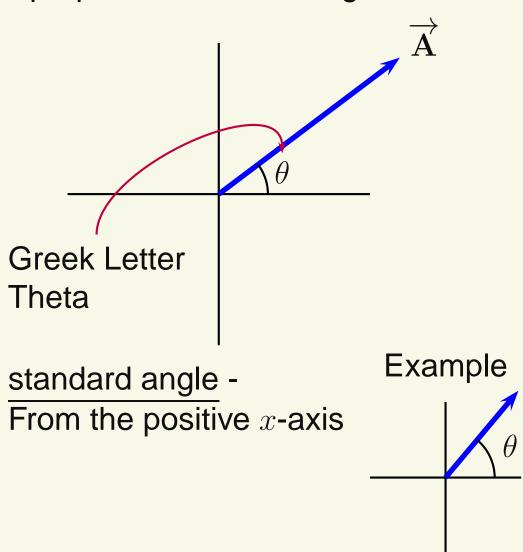
To represent a vector, we use an arrow whose length is proportional to the magnitude.



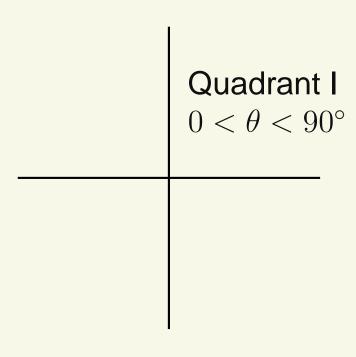
To represent a vector, we use an arrow whose length is proportional to the magnitude.



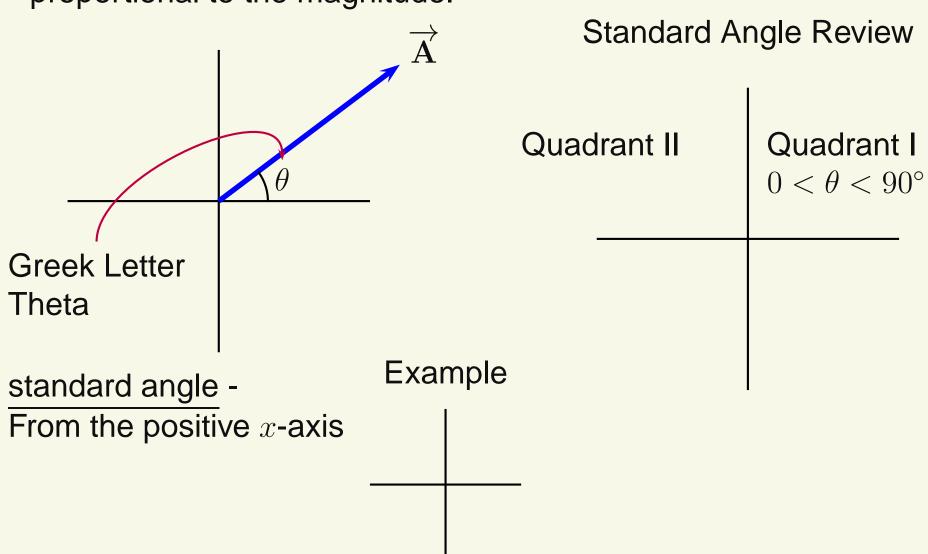
To represent a vector, we use an arrow whose length is proportional to the magnitude.



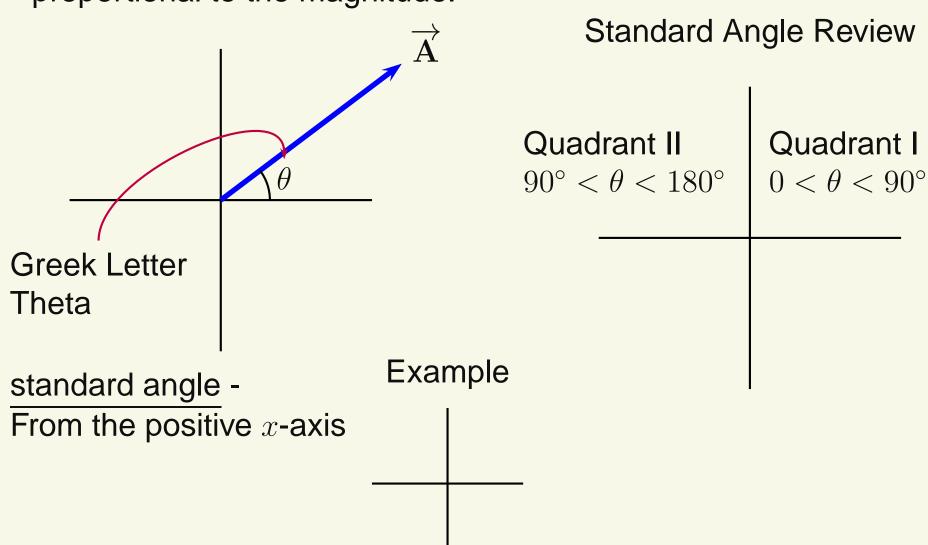
Standard Angle Review



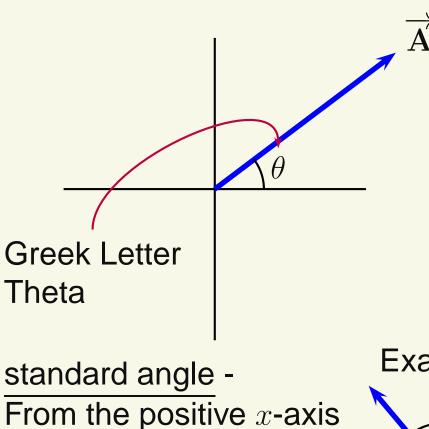
To represent a vector, we use an arrow whose length is proportional to the magnitude.



To represent a vector, we use an arrow whose length is proportional to the magnitude.



To represent a vector, we use an arrow whose length is proportional to the magnitude.

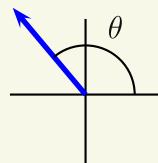


Standard Angle Review

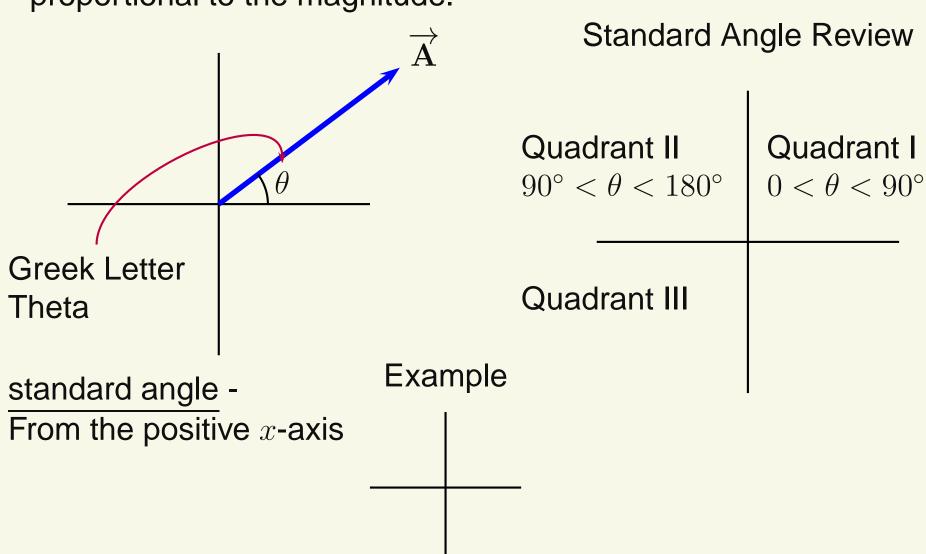
Quadrant II $90^{\circ} < \theta < 180^{\circ}$

Quadrant I $0 < \theta < 90^{\circ}$

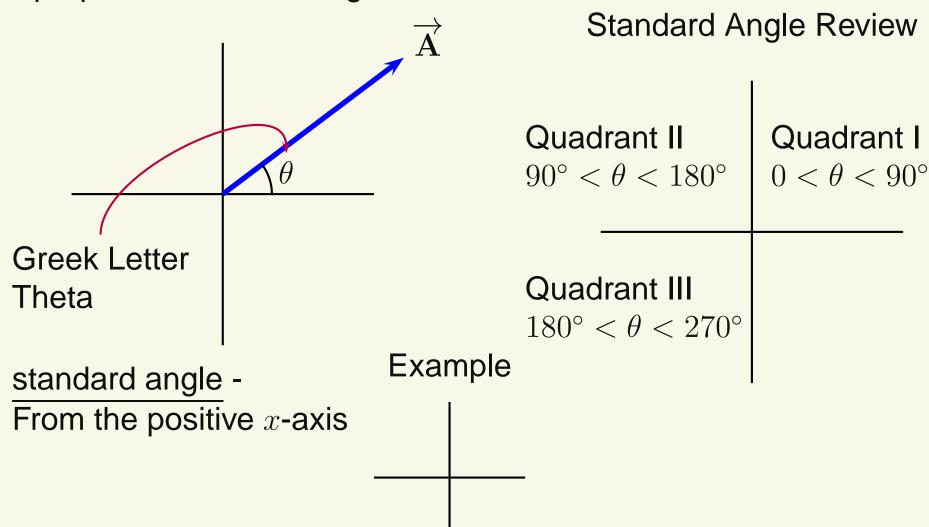
Example



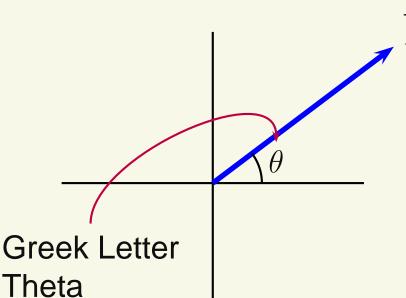
To represent a vector, we use an arrow whose length is proportional to the magnitude.



To represent a vector, we use an arrow whose length is proportional to the magnitude.



To represent a vector, we use an arrow whose length is proportional to the magnitude.



Standard Angle Review

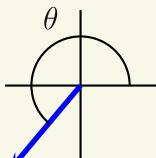
Quadrant II $90^{\circ} < \theta < 180^{\circ}$

Quadrant I $0 < \theta < 90^{\circ}$

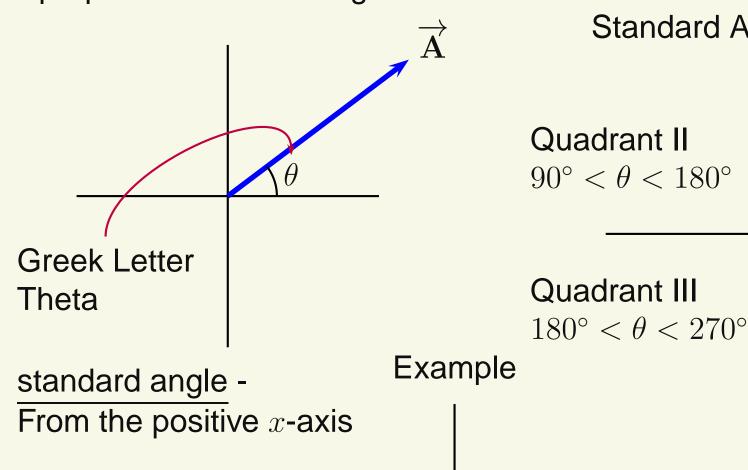
Quadrant III $180^{\circ} < \theta < 270^{\circ}$

standard angle - From the positive *x*-axis

Example



To represent a vector, we use an arrow whose length is proportional to the magnitude.



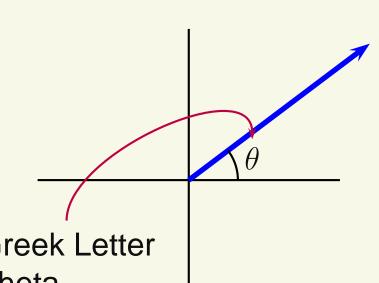
Standard Angle Review

 $90^{\circ} < \theta < 180^{\circ}$

Quadrant I $0 < \theta < 90^{\circ}$

Quadrant IV

To represent a vector, we use an arrow whose length is proportional to the magnitude.



Standard Angle Review

Quadrant II $90^{\circ} < \theta < 180^{\circ}$

Quadrant I $0 < \theta < 90^{\circ}$

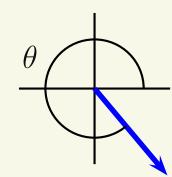
Greek Letter Theta

Quadrant III $180^{\circ} < \theta < 270^{\circ}$

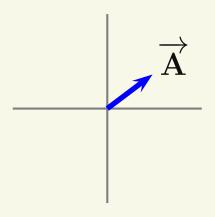
 $270^{\circ} < \theta < 360^{\circ}$

Quadrant IV

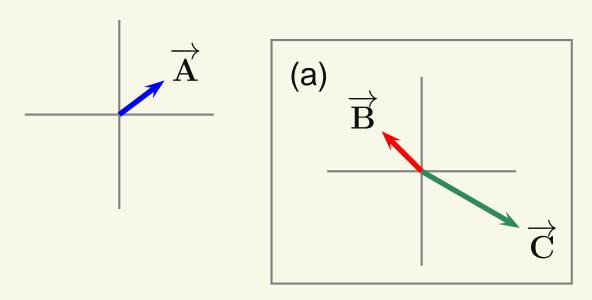
standard angle -From the positive x-axis Example



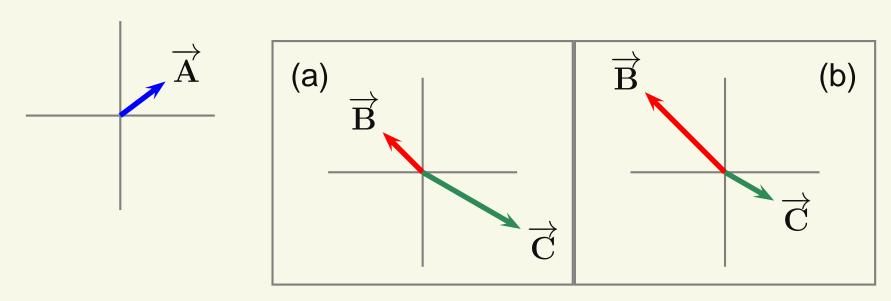
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



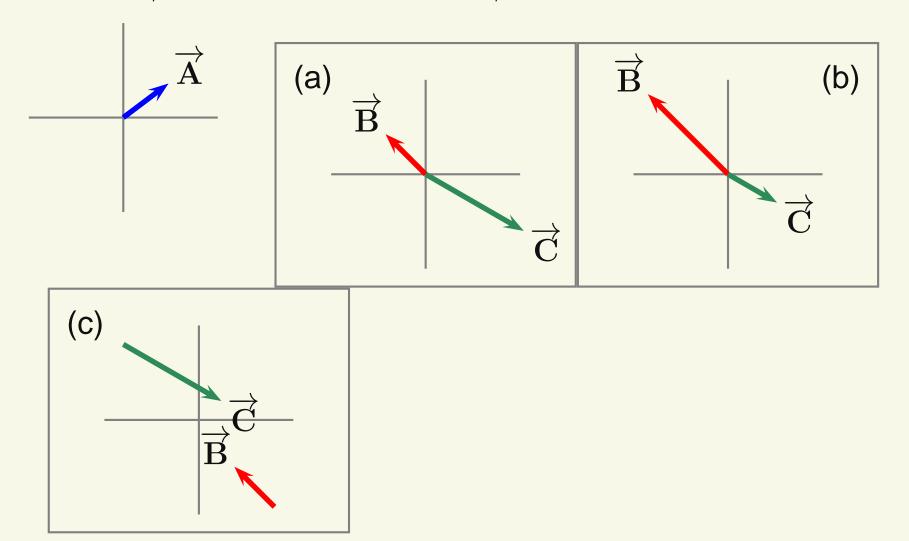
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



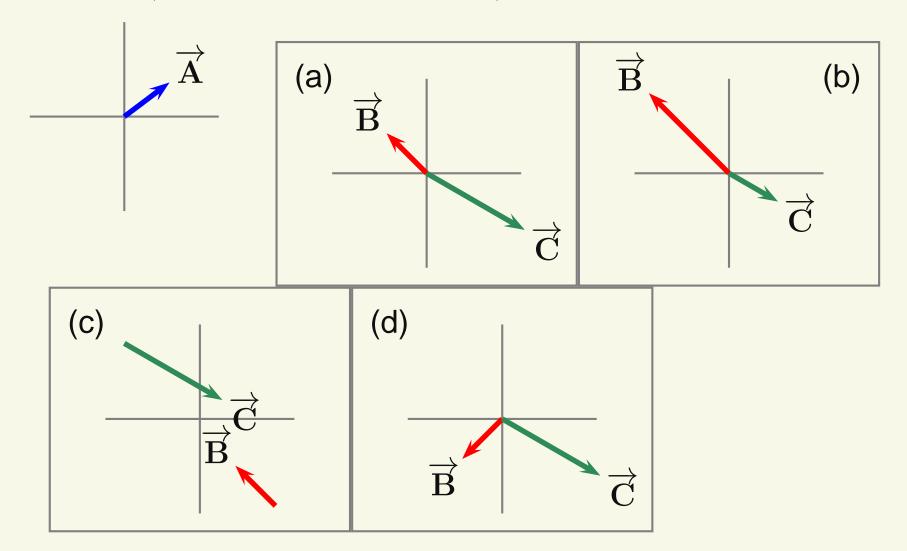
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



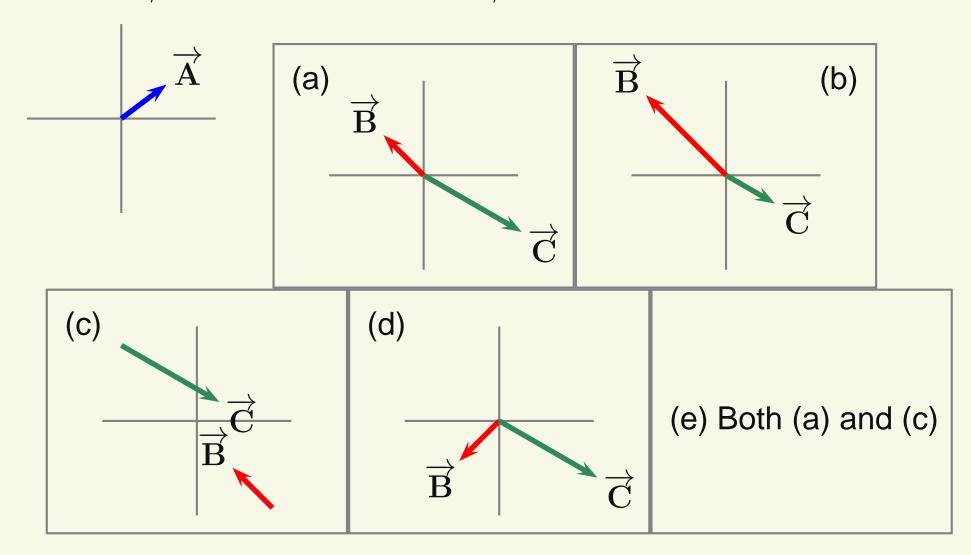
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



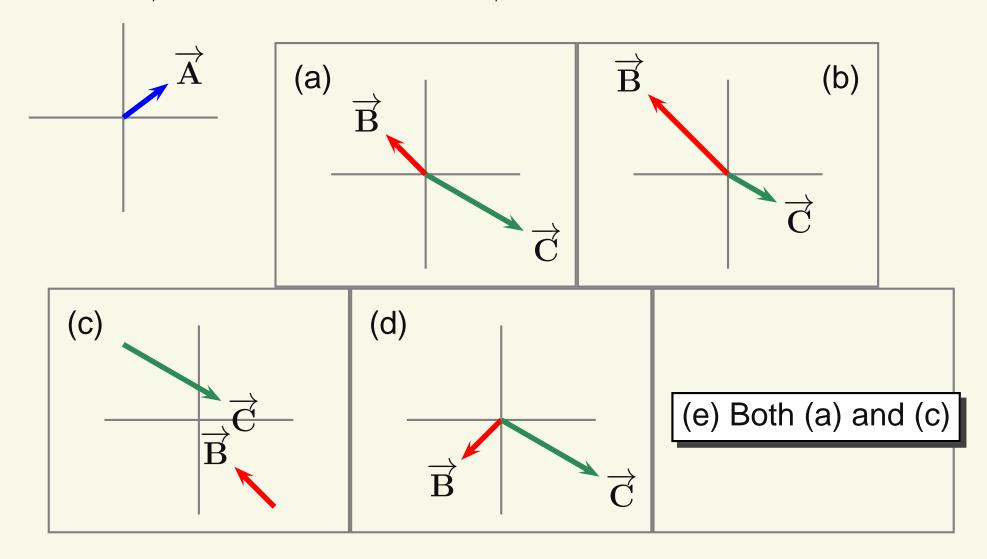
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



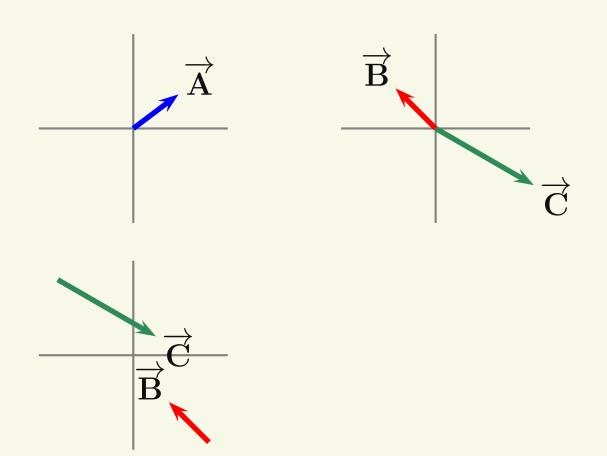
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



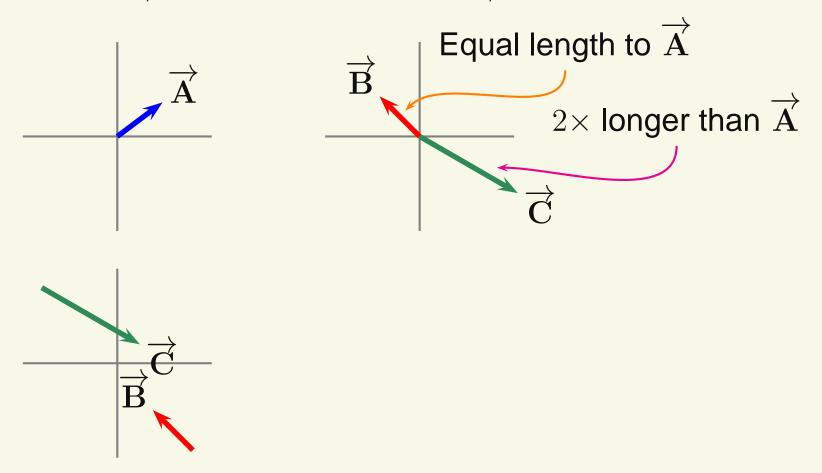
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



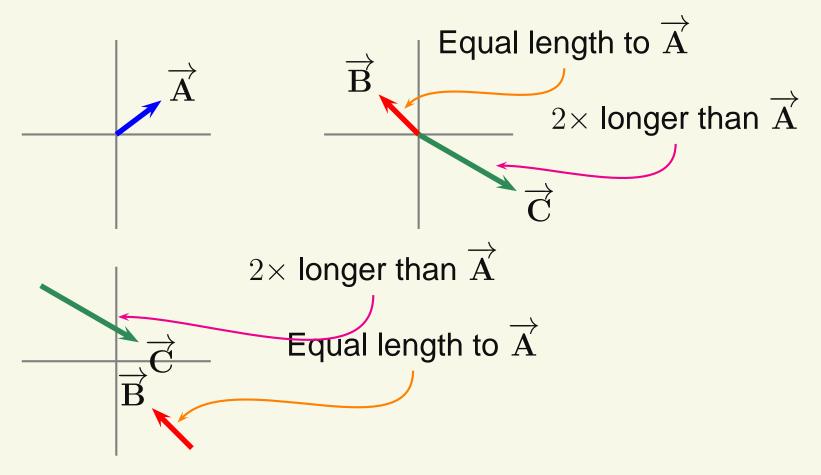
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



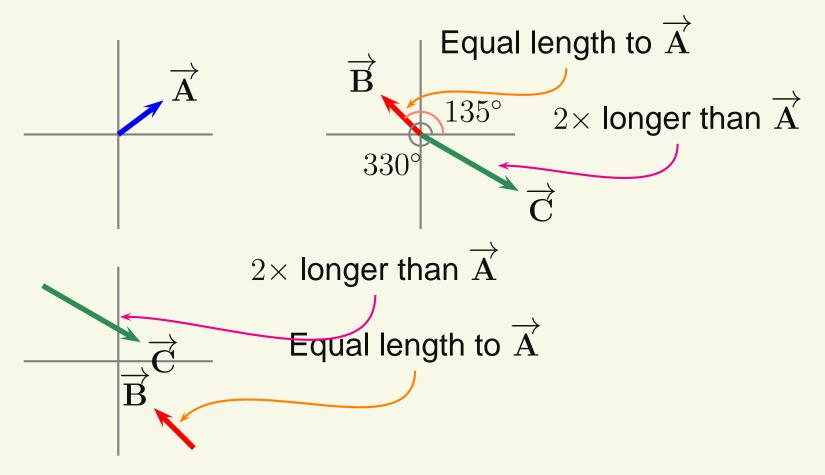
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



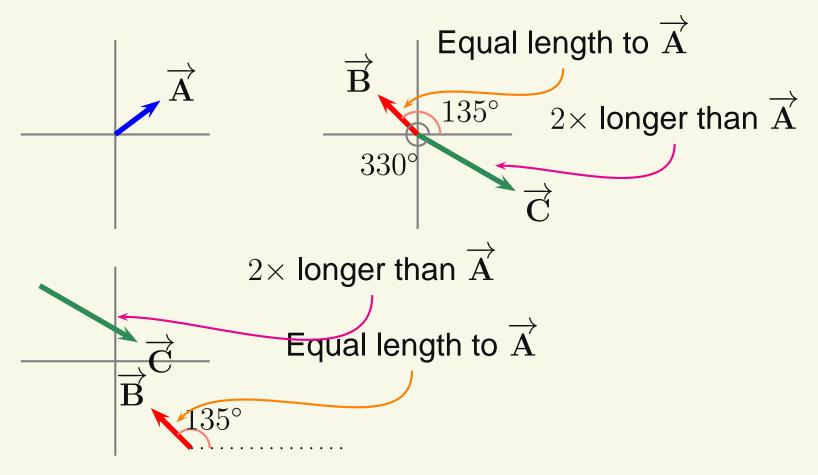
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



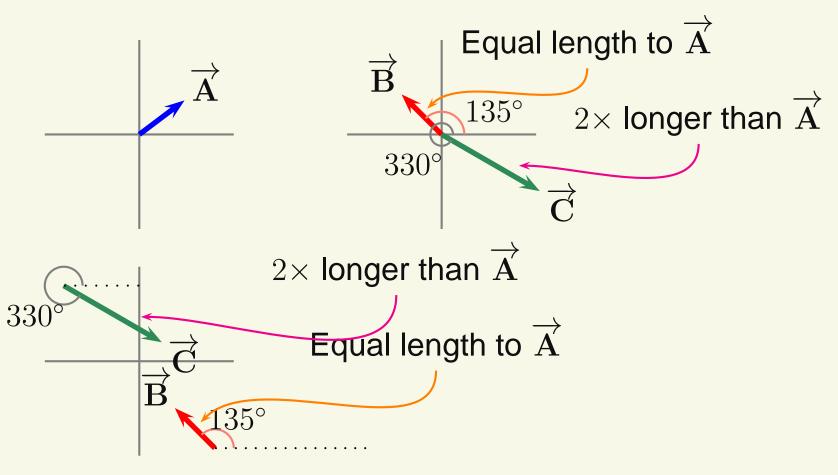
If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?



If $\overrightarrow{\mathbf{A}} = 5\,m/s$ at 37° , which of the following drawing correctly shows $\overrightarrow{\mathbf{B}} = 5\,m/s$ at 135° and $\overrightarrow{\mathbf{C}} = 10\,m/s$ at 330° ?

